login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Riordan array (c(x)/(1+x*c(x)), x*c(x)), c(x) the g.f. of A000108.
4

%I #19 May 27 2022 08:09:23

%S 1,0,1,1,1,1,2,3,2,1,6,8,6,3,1,18,24,18,10,4,1,57,75,57,33,15,5,1,186,

%T 243,186,111,54,21,6,1,622,808,622,379,193,82,28,7,1,2120,2742,2120,

%U 1312,690,311,118,36,8,1,7338,9458,7338,4596,2476,1164,474,163,45,9,1

%N Riordan array (c(x)/(1+x*c(x)), x*c(x)), c(x) the g.f. of A000108.

%H Reinhard Zumkeller, <a href="/A167772/b167772.txt">Rows n=0..125 of triangle, flattened</a>

%F Sum_{k=0..n} T(n, k) = A000958(n+1).

%F From _Philippe Deléham_, Nov 12 2009: (Start)

%F Sum_{k=0..n} T(n,k)*2^k = A014300(n).

%F Sum_{k=0..n} T(n,k)*2^(n-k) = A064306(n). (End)

%F For n > 0: T(n,0) = A065602(n+1,3), T(n,k) = A065602(n+1,k+1), k = 1..n. - _Reinhard Zumkeller_, May 15 2014

%e Triangle begins:

%e 1;

%e 0, 1;

%e 1, 1, 1;

%e 2, 3, 2, 1;

%e 6, 8, 6, 3, 1;

%e 18, 24, 18, 10, 4, 1;

%e 57, 75, 57, 33, 15, 5, 1;

%e 186, 243, 186, 111, 54, 21, 6, 1;

%e 622, 808, 622, 379, 193, 82, 28, 7, 1;

%e 2120, 2742, 2120, 1312, 690, 311, 118, 36, 8, 1;

%e Production matrix begins:

%e 0, 1;

%e 1, 1, 1;

%e 1, 1, 1, 1;

%e 1, 1, 1, 1, 1;

%e 1, 1, 1, 1, 1, 1;

%e 1, 1, 1, 1, 1, 1, 1;

%e 1, 1, 1, 1, 1, 1, 1, 1;

%e 1, 1, 1, 1, 1, 1, 1, 1, 1;

%e 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;

%e ... - _Philippe Deléham_, Mar 03 2013

%t A065602[n_, k_]:= A065602[n,k]= Sum[(k-1+2*j)*Binomial[2*(n-j)-k-1, n-1]/(2*(n-j) -k-1), {j, 0, (n-k)/2}];

%t T[n_, k_]:= If[k==0, A065602[n+1,3] + Boole[n==0], A065602[n+1, k+1]];

%t Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, May 26 2022 *)

%o (Haskell)

%o import Data.List (genericIndex)

%o a167772 n k = genericIndex (a167772_row n) k

%o a167772_row n = genericIndex a167772_tabl n

%o a167772_tabl = [1] : [0, 1] :

%o map (\xs@(_:x:_) -> x : xs) (tail a065602_tabl)

%o -- _Reinhard Zumkeller_, May 15 2014

%o (SageMath)

%o def A065602(n,k): return sum( (k+2*j-1)*binomial(2*n-2*j-k-1, n-1)/(2*n-2*j-k-1) for j in (0..(n-k)//2) )

%o def A167772(n,k):

%o if (k==0): return A065602(n+1,3) + bool(n==0)

%o else: return A065602(n+1,k+1)

%o flatten([[A167772(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, May 26 2022

%Y Cf. A000957, A000958 (row sums), A001558, A001559, A104629, A167769.

%Y Diagonals: A000012, A000217, A001477, A166830.

%K nonn,tabl

%O 0,7

%A _Philippe Deléham_, Nov 11 2009, corrected Nov 12 2009