login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166830
Number of n X 3 1..2 arrays containing at least one of each value, all equal values connected, rows considered as a single number in nondecreasing order, and columns considered as a single number in nonincreasing order.
5
2, 8, 18, 33, 54, 82, 118, 163, 218, 284, 362, 453, 558, 678, 814, 967, 1138, 1328, 1538, 1769, 2022, 2298, 2598, 2923, 3274, 3652, 4058, 4493, 4958, 5454, 5982, 6543, 7138, 7768, 8434, 9137, 9878, 10658, 11478, 12339, 13242
OFFSET
1,1
FORMULA
Empirical: a(n) = (n^3+6*n^2+11*n-6)/6.
a(n) = A167772(n+3,n). - Philippe Deléham, Nov 11 2009
a(n) = A227819(n+6,n+2). - Alois P. Heinz, Sep 22 2013
Empirical: a(n) = floor(A000292(n+1)^3/(A000292(n+1) + 1)^ 2). - Ivan N. Ianakiev, Nov 05 2013
From G. C. Greubel, May 25 2016: (Start)
Empirical G.f.: (-1 + 6*x - 6*x^2 + 2*x^3)/(1 - x)^4 + 1.
Empirical E.g.f.: (1/6)*(-6 + 18*x + 9*x^2 + x^3)*exp(x) + 1. (End)
EXAMPLE
All solutions for n=3
...1.1.1...1.1.1...1.1.1...1.1.1...1.1.1...1.1.1...1.1.1...1.1.1...1.1.1
...1.1.1...1.1.1...1.1.1...2.1.1...2.1.1...2.1.1...2.2.1...2.2.1...2.2.2
...2.1.1...2.2.1...2.2.2...2.1.1...2.2.1...2.2.2...2.2.1...2.2.2...2.2.2
------
...2.1.1...2.1.1...2.1.1...2.1.1...2.1.1...2.1.1...2.2.1...2.2.1...2.2.1
...2.1.1...2.1.1...2.1.1...2.2.1...2.2.1...2.2.2...2.2.1...2.2.1...2.2.2
...2.1.1...2.2.1...2.2.2...2.2.1...2.2.2...2.2.2...2.2.1...2.2.2...2.2.2
MATHEMATICA
lst={}; Do[AppendTo[lst, n*(n+1)*(n+2)/6-2], {n, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 07 2010 *)
CROSSREFS
Sequence in context: A190787 A018229 A365265 * A072779 A292764 A198014
KEYWORD
nonn
AUTHOR
R. H. Hardin, Oct 21 2009
STATUS
approved