login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n X 3 1..2 arrays containing at least one of each value, all equal values connected, rows considered as a single number in nondecreasing order, and columns considered as a single number in nonincreasing order.
5

%I #22 May 26 2016 02:29:37

%S 2,8,18,33,54,82,118,163,218,284,362,453,558,678,814,967,1138,1328,

%T 1538,1769,2022,2298,2598,2923,3274,3652,4058,4493,4958,5454,5982,

%U 6543,7138,7768,8434,9137,9878,10658,11478,12339,13242

%N Number of n X 3 1..2 arrays containing at least one of each value, all equal values connected, rows considered as a single number in nondecreasing order, and columns considered as a single number in nonincreasing order.

%F Empirical: a(n) = (n^3+6*n^2+11*n-6)/6.

%F a(n) = A167772(n+3,n). - _Philippe Deléham_, Nov 11 2009

%F a(n) = A227819(n+6,n+2). - _Alois P. Heinz_, Sep 22 2013

%F Empirical: a(n) = floor(A000292(n+1)^3/(A000292(n+1) + 1)^ 2). - _Ivan N. Ianakiev_, Nov 05 2013

%F From _G. C. Greubel_, May 25 2016: (Start)

%F Empirical G.f.: (-1 + 6*x - 6*x^2 + 2*x^3)/(1 - x)^4 + 1.

%F Empirical E.g.f.: (1/6)*(-6 + 18*x + 9*x^2 + x^3)*exp(x) + 1. (End)

%e All solutions for n=3

%e ...1.1.1...1.1.1...1.1.1...1.1.1...1.1.1...1.1.1...1.1.1...1.1.1...1.1.1

%e ...1.1.1...1.1.1...1.1.1...2.1.1...2.1.1...2.1.1...2.2.1...2.2.1...2.2.2

%e ...2.1.1...2.2.1...2.2.2...2.1.1...2.2.1...2.2.2...2.2.1...2.2.2...2.2.2

%e ------

%e ...2.1.1...2.1.1...2.1.1...2.1.1...2.1.1...2.1.1...2.2.1...2.2.1...2.2.1

%e ...2.1.1...2.1.1...2.1.1...2.2.1...2.2.1...2.2.2...2.2.1...2.2.1...2.2.2

%e ...2.1.1...2.2.1...2.2.2...2.2.1...2.2.2...2.2.2...2.2.1...2.2.2...2.2.2

%t lst={};Do[AppendTo[lst,n*(n+1)*(n+2)/6-2],{n,5!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Feb 07 2010 *)

%K nonn

%O 1,1

%A _R. H. Hardin_, Oct 21 2009