The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064306 Convolution of A052701 (Catalan numbers multiplied by powers of 2) with powers of -1. 5
 1, 1, 7, 33, 191, 1153, 7295, 47617, 318463, 2170881, 15028223, 105365505, 746651647, 5339185153, 38478839807, 279201841153, 2037998419967, 14954803494913, 110255315877887, 816299567480833, 6066679566041087 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 W. Lang, On polynomials related to derivatives of the generating function of Catalan numbers, Fib. Quart. 40,4 (2002) 299-313; Eq.(31) with lambda=-1/2. FORMULA a(n) = (-1)^n*Sum_{k=0,..,n} (C(k)/(-1/2)^k) with C(k)=A000108(k) (Catalan). a(n) = -a(n-1) + C(n)*2^n, n >= 0, a(-1) := 0, with C(n)=A000108(n). G.f.: A(2*x)/(1+x), with A(x) g.f. of Catalan numbers A000108. Recurrence: (n+1)*a(n) = (7*n-5)*a(n-1) + 4*(2*n-1)*a(n-2). - Vaclav Kotesovec, Dec 09 2013 a(n) ~ 2^(3*n+3)/(9*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Dec 09 2013 MATHEMATICA CoefficientList[Series[(1-Sqrt[1-8*x])/(4*x*(1+x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 09 2013 *) Table[FullSimplify[2^(n+1)*(2*n+2)! * Hypergeometric2F1Regularized[1, n+3/2, n+3, -8]/(n+1)! + (-1)^n/2], {n, 0, 20}] (* Vaclav Kotesovec, Dec 09 2013 *) Table[(-1)^n*Sum[(-2)^k * CatalanNumber[k], {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Jan 27 2017 *) PROG (Sage) def A064306(): f, c, n = 1, 1, 1 while True: yield f n += 1 c = c * (8*n - 12) // n f = c - f a = A064306() print([next(a) for _ in range(21)]) # Peter Luschny, Nov 30 2016 (PARI) for(n=0, 25, print1((-1)^n*sum(k=0, n, (-2)^k*binomial(2*k, k)/(k+1)), ", ")) \\ G. C. Greubel, Jan 27 2017 CROSSREFS Sequence in context: A275860 A054256 A085636 * A292427 A333565 A215125 Adjacent sequences: A064303 A064304 A064305 * A064307 A064308 A064309 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Sep 13 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 22:36 EST 2023. Contains 367616 sequences. (Running on oeis4.)