|
|
A346688
|
|
Replace 4^k with (-1)^k in base-4 expansion of n.
|
|
8
|
|
|
0, 1, 2, 3, -1, 0, 1, 2, -2, -1, 0, 1, -3, -2, -1, 0, 1, 2, 3, 4, 0, 1, 2, 3, -1, 0, 1, 2, -2, -1, 0, 1, 2, 3, 4, 5, 1, 2, 3, 4, 0, 1, 2, 3, -1, 0, 1, 2, 3, 4, 5, 6, 2, 3, 4, 5, 1, 2, 3, 4, 0, 1, 2, 3, -1, 0, 1, 2, -2, -1, 0, 1, -3, -2, -1, 0, -4, -3, -2, -1, 0, 1, 2, 3, -1, 0, 1, 2, -2, -1, 0, 1, -3, -2, -1, 0, 1, 2, 3, 4, 0, 1, 2, 3, -1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
If n has base-4 expansion abc..xyz with least significant digit z, a(n) = z - y + x - w + ...
|
|
LINKS
|
|
|
FORMULA
|
G.f. A(x) satisfies: A(x) = x * (1 + 2*x + 3*x^2) / (1 - x^4) - (1 + x + x^2 + x^3) * A(x^4).
a(n) = n + 5 * Sum_{k>=1} (-1)^k * floor(n/4^k).
|
|
EXAMPLE
|
54 = 312_4, 2 - 1 + 3 = 4, so a(54) = 4.
|
|
MATHEMATICA
|
nmax = 104; A[_] = 0; Do[A[x_] = x (1 + 2 x + 3 x^2)/(1 - x^4) - (1 + x + x^2 + x^3) A[x^4] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[n + 5 Sum[(-1)^k Floor[n/4^k], {k, 1, Floor[Log[4, n]]}], {n, 0, 104}]
|
|
PROG
|
(Python)
from sympy.ntheory.digits import digits
def a(n):
return sum(bi*(-1)**k for k, bi in enumerate(digits(n, 4)[1:][::-1]))
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|