OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = [x^n] (1-3*x)/(x*sqrt(1-4*x))-1/x.
a(n) = 4^n*(n-1)*hypergeom([3/2, -n], [2], 1).
a(n) = 4^n*(n-1)*JacobiP(n,1,-1/2-n,-1)/(n+1).
a(n) = (2*n)! [x^(2^n)]( BesselI(2,2*x) - (1+1/x)*BesselI(1,2*x) ).
a(n) = binomial(2*n,n) - 2*Catalan(n). (See Geoffrey Critzer's formula in A024483).
a(n) = A056040(2*n)*(1-2/(n+1)) = (n^2-1)*(2*n)!/(n+1)!^2.
a(n) = A232500(2*n).
a(n) = a(n-1)*2*(n-1)*(2*n-1)/((n-2)*(n+1)) for n > 2. - Chai Wah Wu, Sep 12 2016
a(n) = A024483(n+1) for n>0. - R. J. Mathar, Sep 13 2016
From Amiram Eldar, Mar 22 2022: (Start)
Sum_{n>=2} 1/a(n) = 5/6 - Pi/(9*sqrt(3)).
Sum_{n>=2} (-1)^n/a(n) = 26*sqrt(5)*log(phi)/25 - 7/10, where phi is the golden ratio (A001622). (End)
MAPLE
MATHEMATICA
Table[(n - 1) CatalanNumber[n], {n, 0, 30}] (* Vincenzo Librandi, Sep 13 2016 *)
PROG
(Sage)
A276666 = lambda n: (n - 1) * catalan_number(n)
[A276666(n) for n in range(27)]
(Magma) [(n-1)*Catalan(n): n in [0..30]]; // Vincenzo Librandi, Sep 13 2016
(PARI) a(n) = if(n==0, -1, 2*binomial(2*n-1, n+1)); \\ G. C. Greubel, Aug 29 2019
(GAP) Concatenation([-1], List([1..30], n-> 2*Binomial(2*n-1, n+1))); # G. C. Greubel, Aug 29 2019
CROSSREFS
KEYWORD
sign
AUTHOR
Peter Luschny, Sep 12 2016
STATUS
approved