login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276666
a(n) = (n-1)*Catalan(n).
2
-1, 0, 2, 10, 42, 168, 660, 2574, 10010, 38896, 151164, 587860, 2288132, 8914800, 34767720, 135727830, 530365050, 2074316640, 8119857900, 31810737420, 124718287980, 489325340400, 1921133836440, 7547311500300, 29667795388452, 116686713634848, 459183826803800
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^n] (1-3*x)/(x*sqrt(1-4*x))-1/x.
a(n) = 4^n*(n-1)*hypergeom([3/2, -n], [2], 1).
a(n) = 4^n*(n-1)*JacobiP(n,1,-1/2-n,-1)/(n+1).
a(n) = (2*n)! [x^(2^n)]( BesselI(2,2*x) - (1+1/x)*BesselI(1,2*x) ).
a(n) = binomial(2*n,n) - 2*Catalan(n). (See Geoffrey Critzer's formula in A024483).
a(n) = A056040(2*n) - 2*A057977(2*n).
a(n) = A056040(2*n)*(1-2/(n+1)) = (n^2-1)*(2*n)!/(n+1)!^2.
a(n) = A232500(2*n).
a(n) = a(n-1)*2*(n-1)*(2*n-1)/((n-2)*(n+1)) for n > 2. - Chai Wah Wu, Sep 12 2016
a(n) = A024483(n+1) for n>0. - R. J. Mathar, Sep 13 2016
a(n) = A000984(n+1)-3*A000984(n). - Ezhilarasu Velayutham, Aug 27 2019
From Amiram Eldar, Mar 22 2022: (Start)
Sum_{n>=2} 1/a(n) = 5/6 - Pi/(9*sqrt(3)).
Sum_{n>=2} (-1)^n/a(n) = 26*sqrt(5)*log(phi)/25 - 7/10, where phi is the golden ratio (A001622). (End)
MAPLE
f := (1-3*x)/(x*sqrt(1-4*x))-1/x:
series(f, x, 29): seq(coeff(%, x, n), n=0..26);
A276666 := n -> (n^2-1)*(2*n)!/(n+1)!^2:
seq(A276666(n), n=0..26);
MATHEMATICA
Table[(n - 1) CatalanNumber[n], {n, 0, 30}] (* Vincenzo Librandi, Sep 13 2016 *)
PROG
(Sage)
A276666 = lambda n: (n - 1) * catalan_number(n)
[A276666(n) for n in range(27)]
(Magma) [(n-1)*Catalan(n): n in [0..30]]; // Vincenzo Librandi, Sep 13 2016
(PARI) a(n) = if(n==0, -1, 2*binomial(2*n-1, n+1)); \\ G. C. Greubel, Aug 29 2019
(GAP) Concatenation([-1], List([1..30], n-> 2*Binomial(2*n-1, n+1))); # G. C. Greubel, Aug 29 2019
CROSSREFS
A024483 is a variant of this sequence.
Sequence in context: A192695 A181052 A024483 * A302524 A084180 A020988
KEYWORD
sign
AUTHOR
Peter Luschny, Sep 12 2016
STATUS
approved