|
|
A323824
|
|
a(0) = 6; thereafter a(n) = 4*a(n-1) + 1.
|
|
1
|
|
|
6, 25, 101, 405, 1621, 6485, 25941, 103765, 415061, 1660245, 6640981, 26563925, 106255701, 425022805, 1700091221, 6800364885, 27201459541, 108805838165, 435223352661, 1740893410645, 6963573642581, 27854294570325, 111417178281301, 445668713125205
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 0..1000
Mike Warburton, Ulam-Warburton Automaton - Counting Cells with Quadratics, arXiv:1901.10565 [math.CO], 2019.
Index entries for linear recurrences with constant coefficients, signature (5,-4).
|
|
FORMULA
|
G.f.: (6 - 5*x) / ((1 - x)*(1 - 4*x)).
a(n) = (19*4^n - 1) / 3. - Colin Barker, Feb 01 2019
|
|
PROG
|
(PARI) Vec((6 - 5*x) / ((1 - x)*(1 - 4*x)) + O(x^25)) \\ Colin Barker, Feb 01 2019
(PARI) a(n) = (19*4^n - 1) / 3 \\ Colin Barker, Feb 01 2019
|
|
CROSSREFS
|
Sequence in context: A034347 A009121 A327504 * A037537 A253220 A037481
Adjacent sequences: A323821 A323822 A323823 * A323825 A323826 A323827
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane, Feb 01 2019
|
|
STATUS
|
approved
|
|
|
|