OFFSET
0,3
COMMENTS
(-1)^binomial(n,2) times the Hankel transform of the sequence with g.f. 1/(1 - x^2/(1 - 3x^2/(1 - (10/9)x^2/(1 - (51/100)x^2/(1 - (2490/289)x^2/(1 - ... where 3, 10/9, 51/100, 2490/289, ... are the x-coordinates of the multiples of (0,0) on E: y^2 + xy - y = x^3 - x^2 + 2x.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..119
FORMULA
a(n) = (a(n-1)*a(n-3) + 3*a(n-2)^2)/a(n-4), n > 3.
MATHEMATICA
RecurrenceTable[{a[n]==(a[n-1]*a[n-3] +3*a[n-2]^2)/a[n-4], a[0]==1, a[1] ==1, a[2]==-3, a[3]==-10}, a, {n, 0, 30}] (* G. C. Greubel, Jan 28 2019 *)
PROG
(PARI) a(n)=local(E, z); E=ellinit([1, -1, -1, 2, 0]); z=ellpointtoz(E, [0, 0]);
round(ellsigma(E, n*z)/ellsigma(E, z)^(n^2))
(PARI) m=30; v=concat([1, 1, -3, -10], vector(m-4)); for(n=5, m, v[n] = ( v[n-1]*v[n-3] + 3*v[n-2]^2)/v[n-4]); v \\ G. C. Greubel, Jan 28 2019
(Magma) I:=[1, 1, -3, -10]; [n le 4 select I[n] else (Self(n-1)*Self(n-3) + 3*Self(n-2)^2)/Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 28 2019
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, May 31 2010
STATUS
approved