login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178644
A (1,3) Somos-4 sequence associated to the elliptic curve E: y^2 + x*y - y = x^3 - x^2 + 2*x.
2
1, 1, -3, -10, 17, 249, 541, -19520, -234261, 4081751, 157040423, -675903030, -304046407637, -11362045786001, 1814897653228119, 243414885066104960, -23403892390201032679, -11906020446293954889999
OFFSET
0,3
COMMENTS
(-1)^binomial(n,2) times the Hankel transform of the sequence with g.f. 1/(1 - x^2/(1 - 3x^2/(1 - (10/9)x^2/(1 - (51/100)x^2/(1 - (2490/289)x^2/(1 - ... where 3, 10/9, 51/100, 2490/289, ... are the x-coordinates of the multiples of (0,0) on E: y^2 + xy - y = x^3 - x^2 + 2x.
LINKS
FORMULA
a(n) = (a(n-1)*a(n-3) + 3*a(n-2)^2)/a(n-4), n > 3.
MATHEMATICA
RecurrenceTable[{a[n]==(a[n-1]*a[n-3] +3*a[n-2]^2)/a[n-4], a[0]==1, a[1] ==1, a[2]==-3, a[3]==-10}, a, {n, 0, 30}] (* G. C. Greubel, Jan 28 2019 *)
PROG
(PARI) a(n)=local(E, z); E=ellinit([1, -1, -1, 2, 0]); z=ellpointtoz(E, [0, 0]);
round(ellsigma(E, n*z)/ellsigma(E, z)^(n^2))
(PARI) m=30; v=concat([1, 1, -3, -10], vector(m-4)); for(n=5, m, v[n] = ( v[n-1]*v[n-3] + 3*v[n-2]^2)/v[n-4]); v \\ G. C. Greubel, Jan 28 2019
(Magma) I:=[1, 1, -3, -10]; [n le 4 select I[n] else (Self(n-1)*Self(n-3) + 3*Self(n-2)^2)/Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 28 2019
CROSSREFS
Sequence in context: A003615 A043293 A208894 * A128701 A030390 A063220
KEYWORD
easy,sign
AUTHOR
Paul Barry, May 31 2010
STATUS
approved