login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178645
a(n) = sum of divisors d of n such that d^k is not equal to n for any k >= 1.
1
0, 1, 1, 1, 1, 6, 1, 5, 1, 8, 1, 16, 1, 10, 9, 9, 1, 21, 1, 22, 11, 14, 1, 36, 1, 16, 10, 28, 1, 42, 1, 29, 15, 20, 13, 49, 1, 22, 17, 50, 1, 54, 1, 40, 33, 26, 1, 76, 1, 43, 21, 46, 1, 66, 17, 64, 23, 32, 1, 108, 1, 34, 41, 49, 19, 78, 1, 58, 27, 74, 1, 123, 1, 40, 49, 64, 19, 90, 1, 106, 28, 44, 1, 140, 23, 46, 33, 92, 1, 144, 21, 76, 35, 50, 25, 156, 1, 73, 57, 107
OFFSET
1,6
FORMULA
a(n) = A000203(n) - A175067(n).
a(1) = 0, a(p) = 1, a(pq) = p+q+1, a(pq...z) = [(p+1)*(q+1)*…*(z+1)] - (pq…z), for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
EXAMPLE
For n = 16, set of such divisors is {1, 8}; a(16) = 1+8=9.
For n = 90, which is not a perfect power (A001597), the only divisor d for which d^k = 90 is 90 itself, with k=1, thus a(90) = A001065(90) = A000203(90) - 90 = 144. - Antti Karttunen, Jun 12 2018
PROG
(PARI)
A175070(n) = if(!ispower(n), 0, sumdiv(n, d, if((d>1)&&(d<n)&&((d^valuation(n, d))==n), d, 0)));
A178645(n) = (sigma(n) - (A175070(n) + n)); \\ Antti Karttunen, Jun 12 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Dec 25 2010
EXTENSIONS
Term a(90) corrected from 204 to 144 by Antti Karttunen, Jun 12 2018
STATUS
approved