OFFSET
1,6
COMMENTS
The non-exponential divisors d|n of a number n = p(i)^e(i) are divisors d not of the form p(i)^s(i), s(i)|e(i) for all i.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537
FORMULA
a(1) = 1, a(p) = 1, a(p*q) = 1 + p + q, a(p*q*...*z) = (p + 1)*(q + 1)*...*(z + 1) - p*q*...*z, for p, q,..,z = primes (A000040), p*q = product of two distinct primes (A006881), p*q*...*z = product of k (k > 0) distinct primes (A120944).
EXAMPLE
MAPLE
lpowp := proc(n, p) local e; for e from 0 do if n mod p^(e+1) <> 0 then RETURN(e) ; fi; od: end:
expdvs := proc(n) local a, d, nfcts, b, f, iseDiv ; a := {} ; nfcts := ifactors(n)[2] ; for d in ( numtheory[divisors](n) minus {1} ) do iseDiv := true; for f in nfcts do b := lpowp(d, op(1, f) ) ; if b = 0 or op(2, f) mod b <> 0 then iseDiv := false; fi; od: if iseDiv then a := a union {d} ; fi; od: a ; end proc:
A051377 := proc(n) local k ; add( k, k = expdvs(n)) ; end: A160135 := proc(n) if n = 1 then 1; else numtheory[sigma][1](n)-A051377(n) ; fi; end: seq(A160135(n), n=1..120) ; # R. J. Mathar, May 08 2009
MATHEMATICA
esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; a[1] = 1; a[n_] := DivisorSigma[1, n] - esigma[n]; Array[a, 100] (* Amiram Eldar, Oct 26 2021 after Jean-François Alcover at A051377 *)
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, May 02 2009
EXTENSIONS
Edited by R. J. Mathar, May 08 2009
STATUS
approved