login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345125
Numerator of 4/(1 + 1^2/(3 + 2^2/(5 + 3^2/(7 + ... + (n-1)^2/(2*n-1) )))).
2
0, 4, 3, 19, 160, 1744, 644, 2529, 183296, 3763456, 4317632, 54743776, 1013549056, 30594128896, 35618973952, 10392576224, 3111643512832, 123968232030208, 48501417558016, 1083228572868608, 4080033616887808, 188557135970304, 3781715948011520
OFFSET
0,2
COMMENTS
The limit of a(n)/A345259(n) is Pi.
LINKS
Frits Beukers, A rational approach to Pi, Nieuw Archief voor de Wiskunde, December 2000, pp. 372-379.
FORMULA
a(n)/A345259(n) = 4 * A054765(n)/A012244(n).
EXAMPLE
4/(1 + 1^2/(3 + 2^2/5)) = 19/6. So a(3) = 19.
0, 4, 3, 19/6, 160/51, 1744/555, 644/205, 2529/805, 183296/58345, ...
MATHEMATICA
nmax = 25; Join[{0}, Table[4/(1 + ContinuedFractionK[j^2, (2*j + 1), {j, 1, k}]), {k, 0, nmax}] // Numerator] (* Vaclav Kotesovec, Sep 16 2021 *)
PROG
(PARI) a(n) = my(x=0); forstep(i=n, 2, -1, x = (i-1)^2/((2*i-1)+x); ); if (n, numerator(4/(1+x)), numerator(x)); \\ Michel Marcus, Sep 16 2021
CROSSREFS
Cf. A012244, A054765, A054766, A345259 (denominator).
Sequence in context: A241358 A178417 A178628 * A167479 A278424 A278662
KEYWORD
nonn,frac
AUTHOR
Seiichi Manyama, Sep 16 2021
STATUS
approved