login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167479
Convolution of the Catalan numbers A000108(n) and (-2)^n.
1
1, -1, 4, -3, 20, 2, 128, 173, 1084, 2694, 11408, 35970, 136072, 470756, 1732928, 6228989, 22899692, 83845406, 309947888, 1147367414, 4269385592, 15927495836, 59627571968, 223804469714, 842295207896, 3177355985660, 12012641100832
OFFSET
0,3
COMMENTS
Hankel transform is A079935.
FORMULA
G.f.: c(x)/(1+2x), c(x) the g.f. of A000108.
a(n) = Sum_{k=0..n} (-2)^(n-k)*A000108(k).
(n+1)*a(n) + 2*(2-n)*a(n-1) + 4*(1-2*n)*a(n-2)=0. - R. J. Mathar, Nov 16 2011 [Proof in Ekhad/Yang, Theorem 26]
a(n) ~ 2^(2*n + 1) / (3 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 08 2018
MATHEMATICA
CoefficientList[Series[(1 - Sqrt[1 - 4*t])/(2*t*(1 + 2*t)), {t, 0, 50}], t] (* G. C. Greubel, Jun 13 2016 *)
CROSSREFS
Sequence in context: A178417 A178628 A345125 * A278424 A278662 A220861
KEYWORD
easy,sign
AUTHOR
Paul Barry, Nov 04 2009
STATUS
approved