login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332188
a(n) = (1/e^n) * Sum_{j>=2} j^n * n^j / (j-2)!.
0
0, 3, 72, 1557, 36928, 986550, 29641608, 994006209, 36887753216, 1502798312547, 66730937637400, 3209318261685690, 166242143849148864, 9229638177763268395, 546842961612529341032, 34443269219453881669425
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n+2} n^k*(Stirling2(n+2,k) - Stirling2(n+1,k)). [Thanks to Andrew Howroyd for his example in A338282]
EXAMPLE
a(3) = 1557 = (1/e^3) * Sum_{j>=2} j^3 * 3^j / factorial(j-2).
MATHEMATICA
a[n_] := Sum[n^k*(StirlingS2[n + 2, k] - StirlingS2[n + 1, k]), {k, 2, n + 2}]; Array[a, 16, 0] (* Amiram Eldar, Oct 30 2020 *)
PROG
(SageMath) # Increase precision for larger n!
R = RealField(100)
t = 2
sol = [0]*18
for n in range(0, 18):
suma = R(0)
for j in range(t, 1000):
suma += (j^n * n^j) / factorial(j - t)
suma *= exp(-n)
sol[n] = round(suma)
print(sol) # Thanks to Peter Luschny for his example in A338282.
(PARI) a(n) = sum(k=0, n+2, n^k*(stirling(n+2, k, 2) - stirling(n+1, k, 2))); \\ Michel Marcus, Oct 30 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Pedro Caceres, Oct 30 2020
STATUS
approved