login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228712
G.f. A(x) satisfies: 1/A(x)^4 + 16*x*A(x)^4 = 1/A(x^2)^2 + 4*x*A(x^2)^2.
4
1, 3, 72, 2307, 86295, 3513477, 151235361, 6768437853, 311788291023, 14685531568689, 704028657330720, 34239755370728001, 1685178804762196176, 83776625650642935108, 4200738946110487797030, 212201486734654901466543, 10789009182188638106874636, 551682346017956870539952958
OFFSET
0,2
FORMULA
G.f. A(x) satisfies:
(1) 1/A(x^2)^2 + 4*x*A(x^2)^2 = F(x)^4,
(2) 1/A(x)^4 + 16*x*A(x)^4 = F(x)^4,
(3) 1/A(x^4) + 2*x*A(x^4) = sqrt(F(x)^8 - 4*x),
(4) A(x) = ( (F(x)^4 - sqrt(F(x)^8 - 64*x)) / (32*x) )^(1/4),
(5) A(x^2) = ( (F(x)^4 - sqrt(F(x)^8 - 16*x)) / (8*x) )^(1/2),
where F(x) = (F(x^2)^4 + 8*x)^(1/8) is the g.f. of A223026.
EXAMPLE
G.f.: A(x) = 1 + 3*x + 72*x^2 + 2307*x^3 + 86295*x^4 + 3513477*x^5 +...
such that A(x) satisfies the identity illustrated by:
1/A(x)^4 + 16*x*A(x)^4 = 1 + 4*x - 6*x^2 + 24*x^3 - 117*x^4 + 612*x^5 +...
1/A(x^2)^2 + 4*x*A(x^2)^2 = 1 + 4*x - 6*x^2 + 24*x^3 - 117*x^4 + 612*x^5 +...
Related expansions.
A(x)^2 = 1 + 6*x + 153*x^2 + 5046*x^3 + 191616*x^4 + 7876932*x^5 +...
A(x)^4 = 1 + 12*x + 342*x^2 + 11928*x^3 + 467193*x^4 + 19597332*x^5 +...
1/A(x) = 1 - 3*x - 63*x^2 - 1902*x^3 - 69132*x^4 - 2764911*x^5 +...
1/A(x)^2 = 1 - 6*x - 117*x^2 - 3426*x^3 - 122883*x^4 - 4875378*x^5 +...
The g.f. of A223026 begins:
F(x) = 1 + x - 3*x^2 + 14*x^3 - 76*x^4 + 441*x^5 - 2678*x^6 +...
where F(x)^8 = F(x^2)^4 + 8*x:
F(x)^4 = 1 + 4*x - 6*x^2 + 24*x^3 - 117*x^4 + 612*x^5 - 3426*x^6 +...
F(x)^8 = 1 + 8*x + 4*x^2 - 6*x^4 + 24*x^6 - 117*x^8 + 612*x^10 - 3426*x^12 +...
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1/subst(A, x, x^2)^2 + 4*x*subst(A, x, x^2)^2 - 16*x*A^4 +x*O(x^n))^(1/4)); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A223026.
Cf. variants: A187814, A228928.
Sequence in context: A332188 A071645 A322189 * A300967 A332721 A332747
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 30 2013
STATUS
approved