login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A223026 G.f. A(x) satisfies: A(x)^8 = A(x^2)^4 + 8*x. 6
1, 1, -3, 14, -76, 441, -2678, 16813, -108093, 707451, -4696017, 31530792, -213715953, 1460072247, -10042361784, 69473047716, -483046768116, 3373552141194, -23653214175084, 166422650191122, -1174621198245837, 8314055808436788, -58998774106863513 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
The limit a(n+1)/a(n) seems to be near -7.46...
LINKS
FORMULA
Self-convolution yields A228711.
EXAMPLE
G.f.: A(x) = 1 + x - 3*x^2 + 14*x^3 - 76*x^4 + 441*x^5 - 2678*x^6 +-...
where
A(x)^8 = 1 + 8*x + 4*x^2 - 6*x^4 + 24*x^6 - 117*x^8 + 612*x^10 - 3426*x^12 +-...
A(x^2)^4 = 1 + 4*x^2 - 6*x^4 + 24*x^6 - 117*x^8 + 612*x^10 - 3426*x^12 +-...
A(x)^2 = 1 + 2*x - 5*x^2 + 22*x^3 - 115*x^4 + 646*x^5 - 3822*x^6 +-...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, #binary(n), A=(subst(A, x, x^2)^4+8*x+x*O(x^n))^(1/8)); polcoeff(A, n, x)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A246455 A133798 A100937 * A364477 A364758 A353253
KEYWORD
sign
AUTHOR
Paul D. Hanna, Mar 11 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 22 06:02 EST 2024. Contains 370240 sequences. (Running on oeis4.)