login
A364758
G.f. satisfies A(x) = 1 + x*A(x)^4 / (1 + x*A(x)).
2
1, 1, 3, 14, 76, 450, 2818, 18352, 123028, 843345, 5884227, 41650479, 298352365, 2158751879, 15754446893, 115830820439, 857147952469, 6379136387303, 47715901304501, 358529599468636, 2704884469806606, 20481615947325089, 155605509972859999
OFFSET
0,3
FORMULA
a(n) = (1/n) * Sum_{k=0..n-1} (-1)^k * binomial(n,k) * binomial(4*n-3*k,n-1-k) for n > 0.
PROG
(PARI) a(n) = if(n==0, 1, sum(k=0, n-1, (-1)^k*binomial(n, k)*binomial(4*n-3*k, n-1-k))/n);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 05 2023
STATUS
approved