login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364757
The pyramidal array T(r,g,b) = (r+g+b)/((g+b)*(r+b))*C(r+g,b-1)*C(g+b,r)*C(r+b,g), where 1 <= b <= ceiling((r+g+b)/2) and 0 <= r,g <= floor((r+g+b)/2). Read first over the layers corresponding to fixed sum r+g+b, then over the diagonals corresponding to fixed b.
0
1, 1, 1, 3, 1, 1, 2, 2, 1, 8, 1, 5, 15, 15, 1, 5, 1, 3, 3, 8, 54, 8, 1, 27, 27, 1, 7, 70, 70, 42, 168, 42, 1, 14, 14, 1, 4, 4, 30, 192, 30, 20, 400, 400, 20, 1, 64, 200, 64, 1, 9, 210, 210, 405, 1500, 405, 90, 900, 900, 90, 1, 30, 81, 30, 1, 5, 5, 80, 500, 80, 147, 2625, 2625, 147, 40, 1750, 5000, 1750, 40, 1, 125, 875, 875, 125, 1
OFFSET
1,4
COMMENTS
T(r,g,b) is the number of injectively 3-colored trees with r red vertices, g green vertices, and b blue vertices, including a root vertex which is colored blue.
Summing T(r,g,b) over all r,g,b such that r+g+b=n yields the n-th Catalan number, A000108(n).
Column (or row) sums within each fixed r+g+b=n layer yield the number of ordered trees on n edges containing a fixed number of nodes adjacent to a leaf, A108759(n).
Main antidiagonal (corresponding to maximal value b = ceiling((r+g+b)/2)) within each fixed odd (r+g+b) layer is the number of "fighting fish" with fixed numbers of left lower free and right lower free edges with a marked tail A278880.
LINKS
T. Einolf, R. Muth and J. Wilkinson, Injectively k-colored rooted forests, arXiv:2107.13417 [math.CO], 2021, Remark 4.7.
FORMULA
T(r,g,b) = (r+g+b)/((g+b)*(r+b))*C(r+g,b-1)*C(g+b,r)*C(r+b,g).
T(r,g,b) = (r+g+b)/((g+b)*(r+b))*(r+g)!/((r+g-b+1)!*(b-1)!)*((g+b)!/(g+b-r)!*r!))*((r+b)!/((r+b-g)!*g!).
EXAMPLE
The first few layers of the pyramidal array are:
-----------------------------------------------------------------------
1 (r+g+b=1), (b=1) T(0,0,1)
LAYER SUM: 1
-----------------------------------------------------------------------
1 1 (r+g+b=2), (b=1) T(0,1,1) T(1,0,1)
LAYER SUM: 2
-----------------------------------------------------------------------
3 (r+g+b=3), (b=1) T(1,1,1)
1 1 (r+g+b=3), (b=2) T(0,1,2) T(1,0,2)
LAYER SUM: 5
-----------------------------------------------------------------------
2 2 (r+g+b=4), (b=1) T(1,2,1) T(2,1,1)
1 8 1 (r+g+b=4), (b=2) T(0,2,2) T(1,1,2) T(2,0,2)
LAYER SUM: 14
-----------------------------------------------------------------------
5 (r+g+b=5), (b=1) T(2,2,1)
15 15 (r+g+b=5), (b=2) T(1,2,2) T(2,1,2)
1 5 1 (r+g+b=5), (b=3) T(0,2,3) T(1,1,3) T(2,0,3)
LAYER SUM: 42
-----------------------------------------------------------------------
3 3 (r+g+b=6), (b=1) T(2,3,1) T(3,2,1)
8 54 8 (r+g+b=6), (b=2) T(1,3,2) T(2,2,2) T(3,1,2)
1 27 27 1 (r+g+b=6), (b=3) T(0,3,3) T(1,2,3) T(2,1,3) T(3,0,3)
LAYER SUM: 132
-----------------------------------------------------------------------
7 (r+g+b=7), (b=1) T(3,3,1)
70 70 (r+g+b=7), (b=2) T(2,3,2) T(3,2,2)
42 168 42 (r+g+b=7), (b=3) T(1,3,3) T(2,2,3) T(3,1,3)
1 14 14 1 (r+g+b=7), (b=4) T(0,3,4) T(1,2,4) T(2,1,4) T(3,0,4)
LAYER SUM: 429
-----------------------------------------------------------------------
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Robert Muth, Aug 05 2023
STATUS
approved