login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064048
Number of most frequently occurring numbers in the 1-to-n multiplication table.
2
1, 1, 3, 1, 1, 2, 2, 4, 5, 9, 9, 2, 2, 2, 4, 5, 5, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 7, 7, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 1, 1, 1, 1, 1, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
OFFSET
1,3
LINKS
EXAMPLE
In the 1-to-6 multiplication table, the most frequently occurring numbers (each occurring 4 times) are 6 and 12. Therefore a(6)=2.
MATHEMATICA
mfon[n_]:=Module[{x=SortBy[Tally[Times@@@Tuples[Range[n], 2]], Last]}, Length[ Select[x, #[[2]]==x[[-1, 2]]&]]]; Array[mfon, 100] (* Harvey P. Dale, Oct 20 2012 *)
PROG
(PARI) a(n)=my(v=List(), ct, s, r, t); for(a=1, n, for(b=1, n, listput(v, a*b))); s=Set(v); for(i=1, #s, t=sum(j=1, #v, v[j]==s[i]); if(t<r, next); if(t>r, ct=1; r=t, ct++)); ct \\ Charles R Greathouse IV, Feb 05 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Matthew Somerville (matthew.somerville(AT)trinity.oxford.ac.uk), Aug 24 2001
STATUS
approved