login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064046
Number of length 6 walks on an n-dimensional hypercubic lattice starting and finishing at the origin and staying in the nonnegative part.
2
0, 5, 70, 285, 740, 1525, 2730, 4445, 6760, 9765, 13550, 18205, 23820, 30485, 38290, 47325, 57680, 69445, 82710, 97565, 114100, 132405, 152570, 174685, 198840, 225125, 253630, 284445, 317660, 353365, 391650, 432605, 476320, 522885, 572390
OFFSET
0,2
FORMULA
a(n) = 5*n*(3*n^2 - 3*n + 1).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = A064045(n, 3).
a(n) = a(n-1) + 15*A049450(n-1) + 30*A001477(n-1) + 5*A000012(n-1).
G.f.: 5*x*(7*x^2 + 10*x + 1)/(x-1)^4. [Colin Barker, Jul 21 2012]
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {0, 5, 70, 285}, 40] (* Harvey P. Dale, Dec 02 2012 *)
PROG
(Magma) [5*n*(3*n^2-3*n+1): n in [0..40]]; // Vincenzo Librandi, Jun 16 2011
CROSSREFS
Numbers of walks of length 0, 1, 2, 3, 4 and 5 are A000012, A000004, A001477, A000004, A049450 and A000004.
Sequence in context: A218709 A286840 A034944 * A256235 A142588 A246154
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Aug 23 2001
STATUS
approved