Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Mar 29 2022 15:10:29
%S 1,1,3,1,1,2,2,4,5,9,9,2,2,2,4,5,5,1,1,1,1,1,1,5,5,5,5,7,7,2,2,2,2,2,
%T 2,4,4,4,4,1,1,1,1,1,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,4,4,4,4,4,4,4,4,4,
%U 4,6,6,1,1,1,1,1,1,1,1,3,3,3,3,6,6,6,6,6,6,2,2,2,2,2,2,2,2,2,2,2
%N Number of most frequently occurring numbers in the 1-to-n multiplication table.
%H Branden Aldridge, <a href="/A064048/b064048.txt">Table of n, a(n) for n = 1..20000</a>
%e In the 1-to-6 multiplication table, the most frequently occurring numbers (each occurring 4 times) are 6 and 12. Therefore a(6)=2.
%t mfon[n_]:=Module[{x=SortBy[Tally[Times@@@Tuples[Range[n],2]], Last]}, Length[ Select[x,#[[2]]==x[[-1,2]]&]]]; Array[mfon,100] (* _Harvey P. Dale_, Oct 20 2012 *)
%o (PARI) a(n)=my(v=List(),ct,s,r,t); for(a=1,n,for(b=1,n,listput(v,a*b))); s=Set(v); for(i=1,#s, t=sum(j=1,#v,v[j]==s[i]); if(t<r, next); if(t>r,ct=1;r=t, ct++)); ct \\ _Charles R Greathouse IV_, Feb 05 2022
%Y Cf. A064047, A057142, A057143, A057144.
%K nonn
%O 1,3
%A Matthew Somerville (matthew.somerville(AT)trinity.oxford.ac.uk), Aug 24 2001