The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A223023 Poly-Cauchy numbers c_n^(-5). 4
 1, 32, 211, 359, -538, 984, -1866, 1110, 32640, -449760, 5035200, -55896960, 646005600, -7896549120, 102604234080, -1418189492640, 20828546505600, -324419255412480, 5346952977432960, -93035974518691200, 1705088403923592960, -32842738382065931520 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Definition of poly-Cauchy numbers in A222627. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..300 Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012) Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371. Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153. Takao Komatsu, Some recurrence relations of poly-Cauchy numbers, J. Nonlinear Sci. Appl., (2019) Vol. 12, Issue 12, 829-845. M. Z. Spivey,Combinatorial sums and finite differences, Discr. Math. 307 (24) (2007) 3130-3146 Wikipedia, Stirling transform FORMULA a(n) = sum(stirling1(n,k)*(k+1)^5, k=0..n). MATHEMATICA Table[Sum[StirlingS1[n, k] (k + 1)^5, {k, 0, n}], {n, 0, 25}] PROG (MAGMA) [&+[StirlingFirst(n, k)*(k+1)^5: k in [0..n]]: n in [0..25]]; // Bruno Berselli, Mar 28 2013 (PARI) a(n) = sum(k=0, n, stirling(n, k, 1)*(k+1)^5); \\ Michel Marcus, Nov 14 2015 CROSSREFS Sequence in context: A247928 A184020 A283336 * A119286 A125342 A126500 Adjacent sequences:  A223020 A223021 A223022 * A223024 A223025 A223026 KEYWORD sign AUTHOR Takao Komatsu, Mar 28 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 05:05 EST 2021. Contains 349445 sequences. (Running on oeis4.)