|
|
A223023
|
|
Poly-Cauchy numbers c_n^(-5).
|
|
4
|
|
|
1, 32, 211, 359, -538, 984, -1866, 1110, 32640, -449760, 5035200, -55896960, 646005600, -7896549120, 102604234080, -1418189492640, 20828546505600, -324419255412480, 5346952977432960, -93035974518691200, 1705088403923592960, -32842738382065931520
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Definition of poly-Cauchy numbers in A222627.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..300
Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
Takao Komatsu, Some recurrence relations of poly-Cauchy numbers, J. Nonlinear Sci. Appl., (2019) Vol. 12, Issue 12, 829-845.
M. Z. Spivey,Combinatorial sums and finite differences, Discr. Math. 307 (24) (2007) 3130-3146
Wikipedia, Stirling transform
|
|
FORMULA
|
a(n) = Sum_{k=0..n} Stirling1(n,k)*(k+1)^5.
|
|
MATHEMATICA
|
Table[Sum[StirlingS1[n, k] (k + 1)^5, {k, 0, n}], {n, 0, 25}]
|
|
PROG
|
(Magma) [&+[StirlingFirst(n, k)*(k+1)^5: k in [0..n]]: n in [0..25]]; // Bruno Berselli, Mar 28 2013
(PARI) a(n) = sum(k=0, n, stirling(n, k, 1)*(k+1)^5); \\ Michel Marcus, Nov 14 2015
|
|
CROSSREFS
|
Sequence in context: A247928 A184020 A283336 * A119286 A125342 A126500
Adjacent sequences: A223020 A223021 A223022 * A223024 A223025 A223026
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Takao Komatsu, Mar 28 2013
|
|
STATUS
|
approved
|
|
|
|