login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228928
G.f. A(x) satisfies: 1/A(x)^8 + 64*x*A(x)^8 = 1/A(x^2)^4 + 8*x*A(x^2)^4.
3
1, 7, 672, 91147, 14486409, 2516759469, 463051052653, 88674496050245, 17490154693966234, 3528922457876864195, 724934544034900295558, 151110852750623222310189, 31881833636363854856989129, 6795336519252277650628254056, 1461001691259055273207790036665
OFFSET
0,2
FORMULA
G.f. A(x) satisfies:
(1) 1/A(x)^8 + 64*x*A(x)^8 = F(x)^8,
(2) 1/A(x^2)^4 + 8*x*A(x^2)^4 = F(x)^8,
(3) A(x) = ( (F(x)^8 - sqrt(F(x)^16 - 256*x)) / (128*x) )^(1/8),
(4) A(x^2) = ( (F(x)^8 - sqrt(F(x)^16 - 32*x)) / (16*x) )^(1/4),
where F(x) = (F(x^2)^8 + 16*x)^(1/16) is the g.f. of A228927.
EXAMPLE
G.f.: A(x) = 1 + 7*x + 672*x^2 + 91147*x^3 + 14486409*x^4 +...
such that A(x) satisfies the identity illustrated by:
1/A(x)^8 + 64*x*A(x)^8 = 1 + 8*x - 28*x^2 + 224*x^3 - 2198*x^4 + 23856*x^5 +...
1/A(x^2)^4 + 8*x*A(x^2)^4 = 1 + 8*x - 28*x^2 + 224*x^3 - 2198*x^4 + 23856*x^5 +...
Related expansions.
A(x)^4 = 1 + 28*x + 2982*x^2 + 422408*x^3 + 68709025*x^4 + 12111355116*x^5 +...
A(x)^8 = 1 + 56*x + 6748*x^2 + 1011808*x^3 + 169965222*x^4 + 30589656944*x^5 +...
1/A(x)^4 = 1 - 28*x - 2198*x^2 - 277368*x^3 - 42560861*x^4 - 7240234148*x^5 +...
1/A(x)^8 = 1 - 56*x - 3612*x^2 - 431648*x^3 - 64757910*x^4 - 10877750352*x^5 +...
The g.f. of A228927 satisfies F(x) = (F(x^2)^8 + 16*x)^(1/16) and begins:
F(x) = 1 + x - 7*x^2 + 70*x^3 - 798*x^4 + 9737*x^5 - 124124*x^6 + 1631041*x^7 +...
where F(x)^16 = F(x^2)^8 + 16*x:
F(x)^8 = 1 + 8*x - 28*x^2 + 224*x^3 - 2198*x^4 + 23856*x^5 - 277368*x^6 +...
F(x)^16 = 1 + 16*x + 8*x^2 - 28*x^4 + 224*x^6 - 2198*x^8 + 23856*x^10 +...
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1/subst(A, x, x^2)^4 + 8*x*subst(A, x, x^2)^4 - 64*x*A^8 +x*O(x^n))^(1/8)); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A228927.
Cf. variants: A187814, A228712.
Sequence in context: A171737 A013568 A174853 * A332167 A038803 A144957
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 08 2013
STATUS
approved