login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187814
G.f. A(x) satisfies: 1/A(x)^2 + 4*x*A(x)^2 = 1/A(x^2) + 2*x*A(x^2).
3
1, 1, 6, 41, 334, 2901, 26651, 253709, 2483395, 24829132, 252506507, 2603798287, 27161758393, 286118173600, 3039211373800, 32517513415886, 350122302629869, 3790909121211262, 41249405668333107, 450832515809731316, 4947009705400704588, 54479711308604703264, 601933495810972446631
OFFSET
0,3
FORMULA
G.f. A(x) satisfies:
(1) 1/A(x)^2 + 4*x*A(x)^2 = F(x)^2,
(2) 1/A(x^2) + 2*x*A(x^2) = F(x)^2,
(3) A(x) = ( (F(x)^2 - sqrt(F(x)^4 - 16*x)) / (8*x) )^(1/2),
(4) A(x^2) = (F(x)^2 - sqrt(F(x)^4 - 8*x)) / (4*x),
where F(x) = (F(x^2)^2 + 4*x)^(1/4) is the g.f. of A107086.
EXAMPLE
G.f.: A(x) = 1 + x + 6*x^2 + 41*x^3 + 334*x^4 + 2901*x^5 + 26651*x^6 +...
such that A(x) satisfies the identity illustrated by:
1/A(x)^2 + 4*x*A(x)^2 = 1 + 2*x - x^2 + 2*x^3 - 5*x^4 + 12*x^5 - 30*x^6 +...
1/A(x^2) + 2*x*A(x^2) = 1 + 2*x - x^2 + 2*x^3 - 5*x^4 + 12*x^5 - 30*x^6 +...
Related expansions.
A(x)^2 = 1 + 2*x + 13*x^2 + 94*x^3 + 786*x^4 + 6962*x^5 + 64793*x^6 +...
A(x)^4 = 1 + 4*x + 30*x^2 + 240*x^3 + 2117*x^4 + 19512*x^5 + 186706*x^6 +...
1/A(x) = 1 - x - 5*x^2 - 30*x^3 - 233*x^4 - 1949*x^5 - 17503*x^6 +...
1/A(x)^2 = 1 - 2*x - 9*x^2 - 50*x^3 - 381*x^4 - 3132*x^5 - 27878*x^6 +...
The g.f. of A107086 begins:
F(x) = 1 + x - x^2 + 2*x^3 - 5*x^4 + 13*x^5 - 35*x^6 + 99*x^7 - 289*x^8 +...
where F(x)^4 = F(x^2)^2 + 4*x:
F(x)^2 = 1 + 2*x - x^2 + 2*x^3 - 5*x^4 + 12*x^5 - 30*x^6 + 82*x^7 - 233*x^8 +...
F(x)^4 = 1 + 4*x + 2*x^2 - x^4 + 2*x^6 - 5*x^8 + 12*x^10 - 30*x^12 + 82*x^14 +...
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1/subst(A, x, x^2) + 2*x*subst(A, x, x^2) - 4*x*A^2 +x*O(x^n))^(1/2)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A107086.
Cf. variants: A228712, A228928.
Sequence in context: A345189 A083430 A005011 * A009122 A184140 A317410
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 30 2013
STATUS
approved