Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #57 Aug 04 2022 10:19:23
%S 1,1,1,1,1,1,0,1,1,1,-1,0,1,1,1,0,-1,0,5,1,1,1,0,-1,0,1,1,1,0,1,0,-7,
%T 0,7,1,1,-1,0,2,0,-7,0,2,1,1,0,-3,0,1,0,-7,0,3,1,1,5,0,-1,0,1,0,-1,0,
%U 5,1,1,0,5,0,-11,0,11,0,-11,0,11,1,1,-691,0,5,0,-33,0,22,0,-11,0,1,1,1,0,-691,0,65,0,-143,0,143,0,-143,0,13,1,1
%N Faulhaber's triangle: triangle T(k,y) read by rows, giving numerator of the coefficient [m^y] of the polynomial Sum_{x=1..m} x^(k-1).
%C There are many versions of Faulhaber's triangle: search the OEIS for his name. For example, A220962/A220963 is essentially the same as this triangle, except for an initial column of 0's. - _N. J. A. Sloane_, Jan 28 2017
%C Named after the German mathematician Johann Faulhaber (1580-1653). - _Amiram Eldar_, Jun 13 2021
%H Alois P. Heinz, <a href="/A162298/b162298.txt">Rows n = 0..140, flattened</a>
%H Mohammad Torabi-Dashti, <a href="http://www.maa.org/programs/faculty-and-departments/classroom-capsules-and-notes/faulhaber-s-triangle">Faulhaber's Triangle</a>, College Math. J., Vol. 42, No. 2 (2011), pp. 96-97.
%H Mohammad Torabi-Dashti, <a href="/A162298/a162298.pdf">Faulhaber’s Triangle</a>. [Annotated scanned copy of preprint]
%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/PowerSum.html">Power Sum</a>.
%F Faulhaber's triangle of fractions H(n,k) (n >= 0, 1 <= k <= n+1) is defined by: H(0,1)=1; for 2<=k<=n+1, H(n,k) = (n/k)*H(n-1,k-1) with H(n,1) = 1 - Sum_{i=2..n+1}H(n,i). - _N. J. A. Sloane_, Jan 28 2017
%F Sum_{x=1..m} x^(k-1) = (Bernoulli(k,m+1)-Bernoulli(k))/k.
%e The first few polynomials:
%e m;
%e m/2 + m^2/2;
%e m/6 + m^2/2 + m^3/3;
%e 0 + m^2/4 + m^3/2 + m^4/4;
%e -m/30 + 0 + m^3/3 + m^4/2 + m^5/5;
%e ...
%e Initial rows of Faulhaber's triangle of fractions H(n, k) (n >= 0, 1 <= k <= n+1):
%e 1;
%e 1/2, 1/2;
%e 1/6, 1/2, 1/3;
%e 0, 1/4, 1/2, 1/4;
%e -1/30, 0, 1/3, 1/2, 1/5;
%e 0, -1/12, 0, 5/12, 1/2, 1/6;
%e 1/42, 0, -1/6, 0, 1/2, 1/2, 1/7;
%e 0, 1/12, 0, -7/24, 0, 7/12, 1/2, 1/8;
%e -1/30, 0, 2/9, 0, -7/15, 0, 2/3, 1/2, 1/9;
%e ...
%p A162298 := proc(k, y) local gf, x; gf := sum(x^(k-1), x=1..m) ; coeftayl(gf, m=0, y) ; numer(%) ; end proc: # _R. J. Mathar_, Mar 26 2013
%p # To produce Faulhaber's triangle of fractions H(n,k) (n >= 0, 1 <= k <= n+1):
%p H:=proc(n,k) option remember; local i;
%p if n<0 or k>n+1 then 0;
%p elif n=0 then 1;
%p elif k>1 then (n/k)*H(n-1,k-1);
%p else 1 - add(H(n,i),i=2..n+1); fi; end;
%p for n from 0 to 10 do lprint([seq(H(n,k),k=1..n+1)]); od:
%p for n from 0 to 12 do lprint([seq(numer(H(n,k)),k=1..n+1)]); od: # A162298
%p for n from 0 to 12 do lprint([seq(denom(H(n,k)),k=1..n+1)]); od: # A162299 # _N. J. A. Sloane_, Jan 28 2017
%t H[n_, k_] := H[n, k] = Which[n < 0 || k > n+1, 0, n == 0, 1, k > 1, (n/k)* H[n-1, k-1], True, 1 - Sum[H[n, i], {i, 2, n+1}]];
%t Table[H[n, k] // Numerator, {n, 0, 13}, {k, 1, n+1}] // Flatten (* _Jean-François Alcover_, Aug 04 2022 *)
%Y Cf. A000367, A162299 (denominators).
%Y See also A220962/A220963.
%K tabl,frac,sign
%O 0,19
%A _Juri-Stepan Gerasimov_, Jun 30 2009 and Jul 02 2009
%E Offset set to 0 by _Alois P. Heinz_, Feb 19 2021