login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Decimal expansion of the least x>0 satisfying 1=4x*sin(x).
5

%I #7 Aug 09 2021 14:05:04

%S 5,1,1,1,0,2,2,4,0,2,6,7,9,0,3,2,8,1,1,9,7,6,3,5,0,8,6,9,8,9,5,4,5,9,

%T 4,7,7,0,9,7,3,4,2,5,7,3,8,5,6,6,8,5,0,9,8,6,8,8,4,8,0,4,0,8,8,8,8,0,

%U 7,0,5,5,0,0,0,4,5,7,7,2,2,0,7,0,0,6,0,9,2,5,9,4,2,6,4,2,9,4,5,8,8,6,7

%N Decimal expansion of the least x>0 satisfying 1=4x*sin(x).

%e x=0.51110224026790328119763508698954594770973...

%t Plot[{1/x, Sin[x], 2 Sin[x], 3*Sin[x], 4 Sin[x]}, {x, 0, 2 Pi}]

%t t = x /. FindRoot[1/x == Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

%t RealDigits[t] (* A133866 *)

%t t = x /. FindRoot[1/x == 2 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

%t RealDigits[t] (* A196624 *)

%t t = x /. FindRoot[1/x == 3 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

%t RealDigits[t] (* A196754 *)

%t t = x /. FindRoot[1/x == 4 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

%t RealDigits[t] (* A196755 *)

%t t = x /. FindRoot[1/x == 5 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

%t RealDigits[t] (* A196756 *)

%t t = x /. FindRoot[1/x == 6 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

%t RealDigits[t] (* A196757 *)

%Y Cf. A196758.

%K nonn,cons

%O 0,1

%A _Clark Kimberling_, Oct 06 2011