Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #7 Aug 09 2021 14:05:04
%S 5,1,1,1,0,2,2,4,0,2,6,7,9,0,3,2,8,1,1,9,7,6,3,5,0,8,6,9,8,9,5,4,5,9,
%T 4,7,7,0,9,7,3,4,2,5,7,3,8,5,6,6,8,5,0,9,8,6,8,8,4,8,0,4,0,8,8,8,8,0,
%U 7,0,5,5,0,0,0,4,5,7,7,2,2,0,7,0,0,6,0,9,2,5,9,4,2,6,4,2,9,4,5,8,8,6,7
%N Decimal expansion of the least x>0 satisfying 1=4x*sin(x).
%e x=0.51110224026790328119763508698954594770973...
%t Plot[{1/x, Sin[x], 2 Sin[x], 3*Sin[x], 4 Sin[x]}, {x, 0, 2 Pi}]
%t t = x /. FindRoot[1/x == Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
%t RealDigits[t] (* A133866 *)
%t t = x /. FindRoot[1/x == 2 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
%t RealDigits[t] (* A196624 *)
%t t = x /. FindRoot[1/x == 3 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
%t RealDigits[t] (* A196754 *)
%t t = x /. FindRoot[1/x == 4 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
%t RealDigits[t] (* A196755 *)
%t t = x /. FindRoot[1/x == 5 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
%t RealDigits[t] (* A196756 *)
%t t = x /. FindRoot[1/x == 6 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
%t RealDigits[t] (* A196757 *)
%Y Cf. A196758.
%K nonn,cons
%O 0,1
%A _Clark Kimberling_, Oct 06 2011