login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196754
Decimal expansion of the least x>0 satisfying 1=3x*sin(x).
5
5, 9, 4, 8, 3, 9, 1, 7, 2, 5, 0, 5, 4, 9, 2, 9, 5, 4, 8, 3, 4, 8, 9, 9, 7, 7, 5, 3, 7, 7, 9, 2, 1, 5, 1, 0, 8, 5, 6, 7, 7, 7, 0, 5, 1, 7, 4, 0, 1, 9, 0, 8, 8, 9, 2, 4, 7, 6, 3, 0, 9, 2, 7, 7, 9, 1, 2, 3, 8, 3, 7, 6, 1, 7, 3, 2, 0, 2, 4, 8, 1, 7, 8, 4, 0, 4, 9, 4, 9, 9, 3, 7, 2, 4, 2, 3, 7, 2, 4, 9
OFFSET
0,1
EXAMPLE
x=0.594839172505492954834899775377921510856777...
MATHEMATICA
Plot[{1/x, Sin[x], 2 Sin[x], 3*Sin[x], 4 Sin[x]}, {x, 0, 2 Pi}]
t = x /. FindRoot[1/x == Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A133866 *)
t = x /. FindRoot[1/x == 2 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A196624 *)
t = x /. FindRoot[1/x == 3 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A196754 *)
t = x /. FindRoot[1/x == 4 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A196755 *)
t = x /. FindRoot[1/x == 5 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A196756 *)
t = x /. FindRoot[1/x == 6 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A196757 *)
CROSSREFS
Cf. A196758.
Sequence in context: A350760 A340216 A198748 * A198217 A021631 A376009
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 06 2011
STATUS
approved