login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376009
Decimal expansion of the hypergeometric series 3F2(3/4,5/4,1; 2,2 ;1).
0
1, 5, 9, 4, 9, 3, 8, 9, 4, 1, 4, 8, 6, 3, 0, 2, 8, 8, 7, 1, 1, 6, 8, 1, 2, 9, 4, 3, 8, 9, 2, 1, 5, 0, 6, 7, 7, 3, 6, 6, 8, 1, 3, 6, 0, 0, 7, 1, 6, 4, 6, 9, 9, 9, 0, 8, 5, 7, 0, 0, 0, 4, 6, 0, 2, 9, 6, 6, 6, 0, 3, 0, 8, 4, 9, 5, 2, 5, 8, 4, 8, 0, 0, 3, 0, 6, 7
OFFSET
1,2
LINKS
W. N. Bailey, Contiguous hypergeometric functions of the type 3F2, Proc. Glasg. Math. Ass. 2 (1954) 62-65.
James D. Evans, Evaluation of four irrational definite sine integrals using residue theory, Appl. Math. Comp 36 (1990) 163-172, eq. (16).
FORMULA
(1/8)* this = 2 -(15/16) * 2F1(3/4,5/4 ; 3 ;1). [Bailey eq (4.5)]
Integral_(x= 0.. 2*Pi) sqrt(1+sin x) dx = 5.6569... = 2*Pi*(1-this /16). [Evans N_1]
Equals 16 - 32*sqrt(2)/Pi. - Amiram Eldar, Sep 06 2024
EXAMPLE
1.59493894148...
MAPLE
16-15/2*hypergeom([3/4, 5/4], [3], 1) ; evalf(%) ;
MATHEMATICA
RealDigits[16 - 32*Sqrt[2]/Pi, 10, 120][[1]] (* Amiram Eldar, Sep 06 2024 *)
CROSSREFS
Sequence in context: A196754 A198217 A021631 * A201325 A372285 A359485
KEYWORD
cons,nonn
AUTHOR
R. J. Mathar, Sep 05 2024
STATUS
approved