login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227909
Number of ways to write 2*n = p + q with p, q and (p-1)*(q+1) - 1 all prime.
5
0, 1, 1, 1, 2, 1, 2, 3, 3, 1, 2, 5, 2, 3, 2, 3, 3, 5, 3, 1, 5, 4, 5, 4, 3, 4, 7, 4, 4, 2, 1, 4, 9, 2, 4, 11, 4, 2, 6, 2, 6, 11, 6, 4, 3, 3, 5, 6, 4, 3, 6, 2, 4, 10, 3, 10, 12, 7, 1, 6, 6, 5, 11, 4, 5, 6, 4, 3, 11, 2, 10, 13, 4, 6, 5, 2, 14, 13, 2, 2, 5, 5, 9, 15, 5, 3, 7, 8, 5, 3, 5, 7, 15, 3, 1, 8, 5, 7, 11, 4
OFFSET
1,5
COMMENTS
Conjecture: a(n) > 0 for all n > 1.
This is stronger than Goldbach's conjecture for even numbers. It also implies A. Murthy's conjecture (cf. A109909) for even numbers.
We have verified the conjecture for n up to 2*10^7.
Conjecture verified for n up to 10^9. - Mauro Fiorentini, Jul 26 2023
LINKS
Zhi-Wei Sun, Conjectures involving primes and quadratic forms, preprint, arXiv:1211.1588 [math.NT], 2012-2017.
EXAMPLE
a(6) = 1 since 2*6 = 5 + 7, and (5-1)*(7+1)-1 = 31 is prime.
a(10) = 1 since 2*10 = 7 + 13, and (7-1)*(13+1)-1 = 83 is prime.
a(20) = 1 since 2*20 = 17 + 23, and (17-1)*(23+1)-1 = 383 is prime.
MATHEMATICA
a[n_]:=Sum[If[PrimeQ[2n-Prime[i]]&&PrimeQ[(Prime[i]-1)(2n-Prime[i]+1)-1], 1, 0], {i, 1, PrimePi[2n-2]}]
Table[a[n], {n, 1, 100}]
KEYWORD
nonn
AUTHOR
Olivier Gérard and Zhi-Wei Sun, Oct 13 2013
STATUS
approved