login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220455
Number of ways to write n=x+y (x>0, y>0) with 3x-2, 3x+2 and 2xy+1 all prime
6
0, 0, 0, 1, 1, 2, 0, 2, 3, 2, 1, 2, 1, 1, 4, 4, 1, 2, 2, 3, 3, 2, 2, 5, 1, 4, 1, 1, 5, 4, 1, 2, 5, 5, 3, 8, 3, 6, 5, 5, 4, 4, 2, 4, 5, 3, 1, 8, 3, 4, 4, 1, 2, 8, 6, 3, 4, 5, 4, 4, 7, 1, 3, 6, 5, 7, 3, 3, 8, 2, 4, 5, 2, 6, 10, 7, 1, 5, 5, 6, 8, 6, 4, 5, 5, 7, 5, 4, 4, 11, 4, 5, 5, 5, 6, 6, 3, 1, 12, 8
OFFSET
1,6
COMMENTS
Conjecture: a(n)>0 for all n>7.
This has been verified for n up to 10^8. It implies that there are infinitely many cousin primes.
Conjecture verified for n up to 10^9. - Mauro Fiorentini, Aug 06 2023
Zhi-Wei Sun also made some other similar conjectures, e.g., he conjectured that any integer n>17 can be written as x+y (x>0, y>0) with 2x-3, 2x+3 and 2xy+1 all prime, and each integer n>28 can be written as x+y (x>0, y>0) with 2x+1, 2y-1 and 2xy+1 all prime.
Both conjectures verified for n up to 10^9. - Mauro Fiorentini, Aug 06 2023
LINKS
Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588 [math.NT], 2012-2017.
EXAMPLE
a(25)=1 since 25=13+12 with 3*13-2, 3*13+2 and 2*13*12+1=313 all prime.
MATHEMATICA
a[n_]:=a[n]=Sum[If[PrimeQ[3k-2]==True&&PrimeQ[3k+2]==True&&PrimeQ[2k(n-k)+1]==True, 1, 0], {k, 1, n-1}]
Do[Print[n, " ", a[n]], {n, 1, 1000}]
apQ[{a_, b_}]:=AllTrue[{3a-2, 3a+2, 2a*b+1}, PrimeQ]; Table[Count[Flatten[ Permutations/@ IntegerPartitions[n, {2}], 1], _?(apQ[#]&)], {n, 100}] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jun 09 2018 *)
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 15 2012
STATUS
approved