This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A220452 Number of unordered full binary trees with labels from a set of n labels. 2
 1, 3, 9, 37, 225, 1881, 19873, 251889, 3712257, 62286625, 1171487361, 24402416193, 557542291969, 13861636770177, 372514645389825, 10759590258589441, 332386419622387713, 10935312198369141249, 381705328034883127297, 14089260601787531469825, 548302210950105933701121 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) is the size of the population generated by n unrelated ancestors if two individuals produce one descendant together if and only if they are not related. LINKS Felix A. Pahl, Table of n, a(n) for n = 1..400 Stack Exchange, The n immortals problem V. Kotesovec, Interesting asymptotic formulas for binomial sums, Jun 09 2013 FORMULA a(n) = sum(binom(n,k)*(2k-3)!!, k=1..n) a(n) ~ (2n-3)!!*sqrt(e) ~ (2n)!/n!/2^n/(2n-1)*sqrt(e) ~ n^(n-1)*2^(n-1/2)*exp(1/2-n). - Vaclav Kotesovec, Dec 17 2012 EXAMPLE For n=3, each of the three pairs of ancestors produces one descendant, and each of these descendants produces one more descendant with the respective remaining ancestor; three ancestors, three first-order descendants and three second-order descendants makes a population of a(3)=9. MATHEMATICA Table[Sum[Binomial[n, k]*(2*k-3)!!, {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Dec 17 2012 *) PROG (Java) import java.math.BigInteger; public class A220452 {     public static void main (String [] args) {         int max = Integer.parseInt (args [0]);         BigInteger [] doubleFactorials = new BigInteger [max + 1];         BigInteger [] [] binomialCoefficients = new BigInteger [max + 1] [max + 1];         doubleFactorials [0] = BigInteger.ONE;         for (int n = 1; n <= max; n++) {             binomialCoefficients [n] [0] = BigInteger.ONE;             BigInteger sum = BigInteger.ZERO;             for (int k = 1; k <= n; k++) {                 binomialCoefficients [n] [k] = k == n ? BigInteger.ONE : binomialCoefficients [n - 1] [k - 1].add (binomialCoefficients [n - 1] [k]);                 sum = sum.add (binomialCoefficients [n] [k].multiply (doubleFactorials [k - 1]));             }             System.out.println (n + " " + sum);             doubleFactorials [n] = doubleFactorials [n - 1].multiply (BigInteger.valueOf (2 * n - 1));         }     } } CROSSREFS Cf. A001147. Sequence in context: A155159 A222518 A107886 * A130407 A137031 A047148 Adjacent sequences:  A220449 A220450 A220451 * A220453 A220454 A220455 KEYWORD nonn,easy AUTHOR Felix A. Pahl, Dec 15 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.