This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A220452 Number of unordered full binary trees with labels from a set of n labels. 2
 1, 3, 9, 37, 225, 1881, 19873, 251889, 3712257, 62286625, 1171487361, 24402416193, 557542291969, 13861636770177, 372514645389825, 10759590258589441, 332386419622387713, 10935312198369141249, 381705328034883127297, 14089260601787531469825, 548302210950105933701121 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) is the size of the population generated by n unrelated ancestors if two individuals produce one descendant together if and only if they are not related. LINKS Felix A. Pahl, Table of n, a(n) for n = 1..400 Stack Exchange, The n immortals problem V. Kotesovec, Interesting asymptotic formulas for binomial sums, Jun 09 2013 FORMULA a(n) = sum(binom(n,k)*(2k-3)!!, k=1..n) a(n) ~ (2n-3)!!*sqrt(e) ~ (2n)!/n!/2^n/(2n-1)*sqrt(e) ~ n^(n-1)*2^(n-1/2)*exp(1/2-n). - Vaclav Kotesovec, Dec 17 2012 EXAMPLE For n=3, each of the three pairs of ancestors produces one descendant, and each of these descendants produces one more descendant with the respective remaining ancestor; three ancestors, three first-order descendants and three second-order descendants makes a population of a(3)=9. MATHEMATICA Table[Sum[Binomial[n, k]*(2*k-3)!!, {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Dec 17 2012 *) PROG (Java) import java.math.BigInteger; public class A220452 {     public static void main (String [] args) {         int max = Integer.parseInt (args [0]);         BigInteger [] doubleFactorials = new BigInteger [max + 1];         BigInteger [] [] binomialCoefficients = new BigInteger [max + 1] [max + 1];         doubleFactorials [0] = BigInteger.ONE;         for (int n = 1; n <= max; n++) {             binomialCoefficients [n] [0] = BigInteger.ONE;             BigInteger sum = BigInteger.ZERO;             for (int k = 1; k <= n; k++) {                 binomialCoefficients [n] [k] = k == n ? BigInteger.ONE : binomialCoefficients [n - 1] [k - 1].add (binomialCoefficients [n - 1] [k]);                 sum = sum.add (binomialCoefficients [n] [k].multiply (doubleFactorials [k - 1]));             }             System.out.println (n + " " + sum);             doubleFactorials [n] = doubleFactorials [n - 1].multiply (BigInteger.valueOf (2 * n - 1));         }     } } CROSSREFS Cf. A001147. Sequence in context: A155159 A222518 A107886 * A130407 A137031 A047148 Adjacent sequences:  A220449 A220450 A220451 * A220453 A220454 A220455 KEYWORD nonn,easy AUTHOR Felix A. Pahl, Dec 15 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 07:41 EST 2016. Contains 278761 sequences.