Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Aug 13 2022 20:48:59
%S 1,3,9,37,225,1881,19873,251889,3712257,62286625,1171487361,
%T 24402416193,557542291969,13861636770177,372514645389825,
%U 10759590258589441,332386419622387713,10935312198369141249,381705328034883127297,14089260601787531469825,548302210950105933701121
%N Number of unordered full binary trees with labels from a set of n labels.
%C a(n) is the size of the population generated by n unrelated ancestors if two individuals produce one descendant together if and only if they are not related.
%H Felix A. Pahl, <a href="/A220452/b220452.txt">Table of n, a(n) for n = 1..400</a>
%H Mathematics Stack Exchange, <a href="http://math.stackexchange.com/questions/258503">The n immortals problem</a>
%H V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Interesting asymptotic formulas for binomial sums</a>, Jun 09 2013
%F a(n) = Sum_{k=1..n} binomial(n,k)*(2k-3)!!.
%F a(n) ~ (2n-3)!!*sqrt(e) ~ (2n)!/(n!*2^n*(2n-1))*sqrt(e) ~ n^(n-1)*2^(n-1/2)*exp(1/2-n). - _Vaclav Kotesovec_, Dec 17 2012
%e For n=3, each of the three pairs of ancestors produces one descendant, and each of these descendants produces one more descendant with the respective remaining ancestor; three ancestors, three first-order descendants and three second-order descendants makes a population of a(3)=9.
%t Table[Sum[Binomial[n,k]*(2*k-3)!!, {k, 1, n}], {n, 1, 20}] (* _Vaclav Kotesovec_, Dec 17 2012 *)
%o (Java)
%o import java.math.BigInteger;
%o public class A220452 {
%o public static void main (String [] args) {
%o int max = Integer.parseInt (args [0]);
%o BigInteger [] doubleFactorials = new BigInteger [max + 1];
%o BigInteger [] [] binomialCoefficients = new BigInteger [max + 1] [max + 1];
%o doubleFactorials [0] = BigInteger.ONE;
%o for (int n = 1;n <= max;n++) {
%o binomialCoefficients [n] [0] = BigInteger.ONE;
%o BigInteger sum = BigInteger.ZERO;
%o for (int k = 1;k <= n;k++) {
%o binomialCoefficients [n] [k] = k == n ? BigInteger.ONE : binomialCoefficients [n - 1] [k - 1].add (binomialCoefficients [n - 1] [k]);
%o sum = sum.add (binomialCoefficients [n] [k].multiply (doubleFactorials [k - 1]));
%o }
%o System.out.println (n + " " + sum);
%o doubleFactorials [n] = doubleFactorials [n - 1].multiply (BigInteger.valueOf (2 * n - 1));
%o }
%o }
%o }
%Y Cf. A001147.
%Y Partial sums of A084262.
%K nonn,easy
%O 1,2
%A _Felix A. Pahl_, Dec 15 2012