The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A226405 Expansion of x/((1-x-x^3)*(1-x)^3). 7
 0, 1, 4, 10, 21, 40, 71, 120, 196, 312, 487, 749, 1139, 1717, 2571, 3830, 5683, 8407, 12408, 18281, 26898, 39537, 58071, 85245, 125082, 183478, 269074, 394534, 578418, 847927, 1242926, 1821840, 2670295, 3913782, 5736217, 8407142, 12321590, 18058510, 26466393 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS From Bruno Berselli, Jun 07 2013: (Start) A050228(n) = a(n) -a(n-1), n>0. A077868(n-1)= a(n) -2*a(n-1) +a(n-2), n>1. A000217(n) = a(n) -a(n-1) -a(n-3), n>2. A000930(n-1)= a(n) -3*a(n-1) +3*a(n-2) -a(n-3), n>2. n = a(n) -2*a(n-1) +a(n-2) -a(n-3) +a(n-4), n>3. 1 = a(n) -3*a(n-1) +3*a(n-2) -2*a(n-3) +2*a(n-4) -a(n-5), n>4. 0 = a(n) -4*a(n-1) +6*a(n-2) -5*a(n-3) +4*a(n-4) -3*a(n-5) +a(n-6), n>5. (End) LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (4,-6,5,-4,3,-1). FORMULA G.f.: x/((1-x-x^3)*(1-x)^3). From G. C. Greubel, Jul 27 2022: (Start) a(n) = Sum_{j=0..floor((n+2)/3)} binomial(n-2*j+2, j+3). a(n) = A099567(n+2, 3). (End) MAPLE a:= n-> (Matrix(6, (i, j)-> if i=j-1 then 1 elif j=1 then [4, -6, 5, -4, 3, -1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40); MATHEMATICA LinearRecurrence[{4, -6, 5, -4, 3, -1}, {0, 1, 4, 10, 21, 40}, 40] (* Bruno Berselli, Jun 07 2013 *) CoefficientList[Series[x/((1-x-x^3)*(1-x)^3), {x, 0, 50}], x] (* G. C. Greubel, Apr 28 2017 *) PROG (PARI) my(x='x+O('x^50)); Vec(x/((1-x-x^3)*(1-x)^3)) \\ G. C. Greubel, Apr 28 2017 (Magma) A226405:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+2, j+3): j in [0..Floor((n+2)/3)]]) >; [A226405(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022 (SageMath) def A226405(n): return sum(binomial(n-2*j+2, j+3) for j in (0..((n+2)//3))) [A226405(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022 CROSSREFS 4th column of A144903. Cf. A000217, A078012, A099567, A135851. Cf. A000930, A050228, A077868, A144898, A144899, A144900, A144901, A144902, A144903, A144904, A226405. Sequence in context: A024988 A301174 A220907 * A144897 A001891 A266355 Adjacent sequences: A226402 A226403 A226404 * A226406 A226407 A226408 KEYWORD nonn,easy AUTHOR Alois P. Heinz, Jun 06 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 22:02 EDT 2024. Contains 372765 sequences. (Running on oeis4.)