login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144897
Expansion of x/(1 - 4*x + 6*x^2 - 5*x^3 + 4*x^4 - 3*x^5).
1
0, 1, 4, 10, 21, 40, 71, 121, 204, 348, 609, 1097, 2021, 3767, 7035, 13082, 24160, 44318, 80883, 147201, 267702, 487225, 888115, 1621465, 2964090, 5422351, 9921404, 18150445, 33193146, 60679800, 110893986, 202625306, 370215059, 676438568, 1236053904
OFFSET
0,3
FORMULA
G.f.: x/(1 - 4*x + 6*x^2 - 5*x^3 + 4*x^4 - 3*x^5).
MAPLE
a:= n-> (Matrix(5, (i, j)-> if i=j-1 then 1 elif j=1 then [4, -6, 5, -4, 3, -1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40);
MATHEMATICA
CoefficientList[Series[x/(1 -4x +6x^2 -5x^3 +4x^4 -3x^5), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 06 2013 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); [0] cat Coefficients(R!( x/(1-4*x+6*x^2-5*x^3+4*x^4-3*x^5) )); // G. C. Greubel, Jul 27 2022
(Sage)
def A144897_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x/(1-4*x+6*x^2-5*x^3+4*x^4-3*x^5) ).list()
A144897_list(50) # G. C. Greubel, Jul 27 2022
CROSSREFS
Sequence in context: A301174 A220907 A226405 * A001891 A266355 A265053
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 24 2008
EXTENSIONS
Definition corrected at the suggestion of Vincenzo Librandi by Alois P. Heinz, Jun 06 2013
STATUS
approved