OFFSET
0,2
COMMENTS
a(n) = 11111111 in base n for n>0.
LINKS
Carlos M. da Fonseca and Anthony G. Shannon, A formal operator involving Fermatian numbers, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 491-498.
Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
FORMULA
a(n) = (n^8-1)/(n-1) for n != 1.
G.f.: 1 -x*(x^7-8*x^6-57*x^5-1016*x^4-2297*x^3-1464*x^2-191*x-8)/(x-1)^8. - Colin Barker, Oct 29 2012
E.g.f.: exp(x)*(1 + 7*x + 120*x^2 + 423*x^3 + 426*x^4 + 156*x^5 + 22*x^6 + x^7). - Stefano Spezia, Oct 03 2024
EXAMPLE
a(3) = 3280 because 11111111 base 3 = 2187+729+243+81+27+9+3+1 = 3280.
MATHEMATICA
Table[FromDigits["11111111", n], {n, 1, 30}] (* or *) Table[n^7+n^6+n^5+n^4+n^3+n^2+n+1, {n, 1, 60}] (* Vladimir Joseph Stephan Orlovsky, Jan 29 2012 *)
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Henry Bottomley, Mar 23 2000
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, May 04 2021
STATUS
approved