login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053719
Let Py(n)=A000330(n)=n-th square pyramidal number. Consider all integer triples (i,j,k), j >= k>0, with Py(i)=Py(j)+Py(k), ordered by increasing i; sequence gives i values.
3
55, 70, 147, 226, 237, 275, 351, 409, 434, 610, 714, 717, 869, 934, 1085, 1369, 1490, 1602, 1643, 1954, 2363, 2405, 2534, 3020, 3241, 3450, 4017, 4039, 4060, 4140, 4796, 5766, 5830, 6412, 8601, 8635, 8855, 8885, 9423, 10083, 10224, 10809, 11115, 11935
OFFSET
0,1
COMMENTS
j values are A053720 and k values are A053721
EXAMPLE
Py(55) = 56980 = Py(45) + Py(42); Py(70) = 116795 = Py(69) + Py(24);
MATHEMATICA
r[i_, j_] := Reduce[ j >= k > 0 && (2i + 1)*(i + 1)*i == (2j + 1)*(j + 1)*j + (2k + 1)*(k + 1)*k, k, Integers]; ijk = Reap[ Do[ If[ r[i, j] =!= False, sol = {i, j, k} /. ToRules[r[i, j]]; Print[sol]; Sow[sol]], {i, 1, 12000}, {j, Floor[4i/5], i-1}]][[2, 1]]; A053719 = ijk[[All, 1]]; A053720 = ijk[[All, 2]]; A053721 = ijk[[All, 3]]; (* Jean-François Alcover, Oct 17 2012 *)
CROSSREFS
KEYWORD
easy,nice,nonn
AUTHOR
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 11 2000
EXTENSIONS
Crossrefs in comments corrected by Jean-François Alcover, Oct 17 2012
STATUS
approved