login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A053722
Number of n X n binary matrices of order dividing 2 (also number of solutions to X^2=I in GL(n,2)).
25
1, 4, 22, 316, 6976, 373024, 32252032, 6619979776, 2253838544896, 1810098020122624, 2442718932612677632, 7758088894129169760256, 41674675294431186817908736, 526370120583359572695165435904, 11281778621698661853306239290703872
OFFSET
1,2
COMMENTS
In characteristic 2, A^2 = I if and only if B^2 = 0 where B = I + A, so a(n) is also equal to the number of n X n binary matrices B such that B^2 = 0.
Conjecture: the two matrices I and 0 have the largest number of square roots. Checked for n=1..5. - Alexey Slizkov, Jan 11 2024
REFERENCES
Vladeta Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.
LINKS
Jason Fulman and C. Ryan Vinroot, Generating functions for real character degree sums of finite general linear and unitary groups, arXiv:1306.0031 [math.GR], 2013 (see Theorem 3.4 for a g.f.).
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
a(n) = Sum_{k=0..floor(n/2)} (2^n - 1)(2^{n-1} - 1) ... (2^{n-2k+1}-1) * 2^{k(k-1)/2} / ((2^k - 1)(2^{k-1} - 1) ... (2^1 - 1)). - Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 05 2001 [Corrected using the paper by Morrison, which also mentions that there is an error in this entry. k = 0 contributes 1 to the sum. If omitted, this gives the number of matrices of order _exactly_ 2. Jan Kristian Haugland, Apr 24 2024]
MAPLE
Q:= Product(1+u/2^i, i=1..infinity)/Product(1-u^2/2^i, i=1..infinity):
S:= series(Q, u, 31):
seq(coeff(S, u, n)*mul(2^i-1, i=1..n), n=1..30); # Robert Israel, Mar 26 2018
MATHEMATICA
QP = QPochhammer; Q = (1-x) QP[-x, 1/2]/QP[x^2, 1/2];
Table[(-1)^n QP[2, 2, n] SeriesCoefficient[Q, {x, 0, n}], {n, 1, 14}] (* Jean-François Alcover, Sep 17 2018, from Maple *)
PROG
(SageMath)
g = lambda n: GL(n, 2).order() if n>0 else 1
a053722 = lambda n: g(n)*sum(1/(g(k)*g(n-2*k)*2**(k**2+2*k*(n-2*k))) for k in range(1+floor(n/2))) if n>0 else 0
map(a053722, range(25))
# Dmitrii Pasechnik, Oct 02 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Mar 23 2000
STATUS
approved