login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145504
a(n+1)=a(n)^2+2*a(n)-2 and a(1)=4
3
4, 22, 526, 277726, 77132286526, 5949389624883225721726, 35395236908668169265765137996816180039862526, 1252822795820745419377249396736955608088527968701950139470082687906021780162741058825726
OFFSET
1,1
COMMENTS
General formula for a(n+1)=a(n)^2+2*a(n)-2 and a(1)=k+1 is a(n)=Floor[((k + Sqrt[k^2 + 4])/2)^(2^((n+1) - 1))
The next term (a(9)) has 175 digits. - Harvey P. Dale, Nov 16 2013
FORMULA
From Peter Bala, Nov 12 2012: (Start)
a(n) = alpha^(2^(n-1)) + (1/alpha)^(2^(n-1)) - 1, where alpha := 1/2*(5 + sqrt(21)).
a(n) = A003487(n-1) - 1.
Recurrence: a(n) = 6*{product {k = 1..n-1} a(k)} - 2 with a(1) = 4.
Product {n = 1..inf} (1 + 1/a(n)) = 2/7*sqrt(21).
Product {n = 1..inf} (1 + 2/(a(n) + 1)) = sqrt(7/3).
(End)
MATHEMATICA
NestList[#^2+2#-2&, 4, 7] (* Harvey P. Dale, Nov 16 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 11 2008
EXTENSIONS
One additional term (a(8)) from Harvey P. Dale, Nov 16 2013
STATUS
approved