login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let Py(n)=A000330(n)=n-th square pyramidal number. Consider all integer triples (i,j,k), j >= k>0, with Py(i)=Py(j)+Py(k), ordered by increasing i; sequence gives i values.
3

%I #7 Oct 17 2012 08:49:07

%S 55,70,147,226,237,275,351,409,434,610,714,717,869,934,1085,1369,1490,

%T 1602,1643,1954,2363,2405,2534,3020,3241,3450,4017,4039,4060,4140,

%U 4796,5766,5830,6412,8601,8635,8855,8885,9423,10083,10224,10809,11115,11935

%N Let Py(n)=A000330(n)=n-th square pyramidal number. Consider all integer triples (i,j,k), j >= k>0, with Py(i)=Py(j)+Py(k), ordered by increasing i; sequence gives i values.

%C j values are A053720 and k values are A053721

%e Py(55) = 56980 = Py(45) + Py(42); Py(70) = 116795 = Py(69) + Py(24);

%t r[i_, j_] := Reduce[ j >= k > 0 && (2i + 1)*(i + 1)*i == (2j + 1)*(j + 1)*j + (2k + 1)*(k + 1)*k, k, Integers]; ijk = Reap[ Do[ If[ r[i, j] =!= False, sol = {i, j, k} /. ToRules[r[i, j]]; Print[sol]; Sow[sol]], {i, 1, 12000}, {j, Floor[4i/5], i-1}]][[2, 1]]; A053719 = ijk[[All, 1]]; A053720 = ijk[[All, 2]]; A053721 = ijk[[All, 3]]; (* _Jean-François Alcover_, Oct 17 2012 *)

%Y Cf. A000330, A053720, A053721.

%K easy,nice,nonn

%O 0,1

%A Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 11 2000

%E Crossrefs in comments corrected by _Jean-François Alcover_, Oct 17 2012