login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133458
The size of the largest antichain in the 7-dimensional hypercubic lattice of size n; also the coefficient of x^floor(7*(n-1)/2) in (1 + x + ... + x^(n-1))^7.
2
1, 35, 393, 2128, 8135, 24017, 60691, 134512, 273127, 512365, 908755, 1528688, 2473325, 3852919, 5832765, 8582336, 12354469, 17395119, 24072133, 32726960, 43874139, 57971221, 75715487, 97702640, 124853275, 157924585, 198105727
OFFSET
1,2
COMMENTS
The middle coefficients for dimension d>=1 are in A000012, A000027, A077043, A005900, A077044, A071816, here, the d-th row in A077042.
For d=8 the sequence starts 1, 70, 1107, 8092, 38165, 135954, 398567, 1012664, 2306025, ... and for d=9 it starts 1, 126, 3139, 30276, 180325, 767394, 2636263, 7635987, 19610233, ... - R. J. Mathar, Sep 04 2011
LINKS
R. P. Stanley, Weyl groups, the Hard Lefschetz Theorem and the Sperner property, SIAM J. Alg. Disc. Meth. 1 (2) (1980) 168, see eq. (4).
FORMULA
From R. J. Mathar, Feb 19 2010: (Start)
a(n)= 2*a(n-1) +4*a(n-2) -10*a(n-3) -5*a(n-4) +20*a(n-5) -20*a(n-7) +5*a(n-8) +10*a(n-9) -4*a(n-10) -2*a(n-11) +a(n-12).
G.f.: x*(1+33*x +319*x^2 +1212*x^3 +2662*x^4 +3320*x^5 +2662*x^6 +1212*x^7 +319*x^8 +33*x^9 +x^10)/ ((1+x)^5 * (1-x)^7).
a(n) = -25*(-1)^n/512 +2261*n^2/23040 +25/512 +5887*n^6/11520 -77*(-1)^n*n^4/1536 +847*n^4/4608 -91*(-1)^n*n^2/1536. (End)
MAPLE
f:=(L, d)->(sum(x^k, k=0..L-1))^d; A:=[seq(coeff(f(j, 7), x, floor(7*(j-1)/2)), j=1..25)];
A133458 := proc(n) -25/512*(-1)^n +2261/23040*n^2 -91/1536*(-1)^n*n^2 -77/1536*(-1)^n*n^4 +847/4608*n^4 +5887/11520*n^6 +25/512 ; end proc: # R. J. Mathar, Sep 05 2011
PROG
(Magma) [-25*(-1)^n/512 +2261*n^2/23040 +25/512 +5887*n^6/11520 -77*(-1)^n*n^4/1536 +847*n^4/4608 -91*(-1)^n*n^2/1536 : n in [1..40]]; // Vincenzo Librandi, Sep 07 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Leonid Chindelevitch (leonidus(AT)mit.edu), Dec 22 2007
EXTENSIONS
More terms from R. J. Mathar, Feb 19 2010
STATUS
approved