The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A273975 Three-dimensional array written by antidiagonals in k,n: T(k,n,h) with k >= 1, n >= 0, 0 <= h <= n*(k-1) is the coefficient of x^h in the polynomial (1 + x + ... + x^(k-1))^n = ((x^k-1)/(x-1))^n. 6
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 3, 2, 1, 1, 3, 6, 7, 6, 3, 1, 1, 4, 6, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 4, 3, 2, 1, 1, 3, 6, 10, 12, 12, 10, 6, 3, 1, 1, 4, 10 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,13 COMMENTS Equivalently, T(k,n,h) is the number of ordered sets of n nonnegative integers < k with the sum equal to h. From Juan Pablo Herrera P., Nov 21 2016: (Start) T(k,n,h) is the number of possible ways of randomly selecting h cards from k-1 sets, each with n different playing cards. It is also the number of lattice paths from (0,0) to (n,h) using steps (1,0), (1,1), (1,2), ..., (1,k-1). Shallow diagonal sums of each triangle with fixed k give the k-bonacci numbers. (End) T(k,n,h) is the number of n-dimensional grid points of a k X k X ... X k grid, which are lying in the (n-1)-dimensional hyperplane which is at an L1 distance of h from one of the grid's corners, and normal to the corresponding main diagonal of the grid. - Eitan Y. Levine, Apr 23 2023 LINKS Andrey Zabolotskiy, slices with k+n = 1..20, flattened Florentin Smarandache, K-Nomial Coefficients, arXiv:math/0612062 [math.GM], 2006 (originally published in French in: F. Smarandache, Généralisations et Généralités, Ed. Nouvelle, 1984, pp. 24-26). FORMULA T(k,n,h) = Sum_{i = 0..floor(h/k)} (-1)^i*binomial(n,i)*binomial(n+h-1-k*i,n-1). [Corrected by Eitan Y. Levine, Apr 23 2023] From Eitan Y. Levine, Apr 23 2023: (Start) (T(k,n,h))_{h=0..n*(k-1)} = f(f(...f(g(P))...)), where: (x_i)_{i=0..m} denotes a tuple (in particular, the LHS contains the values for 0 <= h <= n*(k-1)), f repeats n times, f((x_i)_{i=0..m}) = (Sum_{j=0..i} x_j)_{i=0..m}) is the cumulative sum function, g((x_i)_{i=0..m}) = (x_(i/k) if k|i, otherwise 0)_{i=0..m*k} is adding k-1 zeros between adjacent elements, and P=((-1)^i*binomial(n,i))_{i=0..n} is the n-th row of Pascal's triangle, with alternating signs. (End) From Eitan Y. Levine, Jul 27 2023: (Start) Recurrence relations, the first follows from the sequence's defining polynomial as mentioned in the Smarandache link: T(k,n+1,h) = Sum_{i = 0..s-1} T(k,n,h-i) T(k+1,n,h) = Sum_{i = 0..n} binomial(n,i)*T(k,n-i,h-i*k) (End) EXAMPLE For first few k and for first few n, the rows with h = 0..n*(k-1) are given: k=1: 1; 1; 1; 1; 1; ... k=2: 1; 1, 1; 1, 2, 1; 1, 3, 3, 1; 1, 4, 6, 4, 1; ... k=3: 1; 1, 1, 1; 1, 2, 3, 2, 1; 1, 3, 6, 7, 6, 3, 1; ... k=4: 1; 1, 1, 1, 1; 1, 2, 3, 4, 3, 2, 1; ... For example, (1 + x + x^2)^3 = 1 + 3*x + 6*x^2 + 7*x^3 + 6*x^4 + 3*x^5 + x^6, hence T(3,3,2) = T(3,3,4) = 6. From Eitan Y. Levine, Apr 23 2023: (Start) Example for the repeated cumulative sum formula, for (k,n)=(3,3) (each line is the cumulative sum of the previous line, and the first line is the padded, alternating 3rd row from Pascal's triangle): 1 0 0 -3 0 0 3 0 0 -1 1 1 1 -2 -2 -2 1 1 1 1 2 3 1 -1 -3 -2 -1 1 3 6 7 6 3 1 which is T(3,3,h). (End) MATHEMATICA a = Table[CoefficientList[Sum[x^(h-1), {h, k}]^n, x], {k, 10}, {n, 0, 9}]; Flatten@Table[a[[s-n, n+1]], {s, 10}, {n, 0, s-1}] (* alternate program *) row[k_, n_] := Nest[Accumulate, Upsample[Table[((-1)^j)*Binomial[n, j], {j, 0, n}], k], n][[;; n*(k-1)+1]] (* Eitan Y. Levine, Apr 23 2023 *) CROSSREFS k-nomial arrays for fixed k=1..10: A000012, A007318, A027907, A008287, A035343, A063260, A063265, A171890, A213652, A213651. Arrays for fixed n=0..6: A000012, A000012, A004737, A109439, A277949, A277950, A277951. Central n-nomial coefficients for n=1..9, i.e., sequences with h=floor(n*(k-1)/2) and fixed n: A000012, A000984 (A001405), A002426, A005721 (A005190), A005191, A063419 (A018901), A025012, (A025013), A025014, A174061 (A025015), A201549, (A225779), A201550. Arrays: A201552, A077042, see also cfs. therein. Triangle n=k-1: A181567. Triangle n=k: A163181. Sequence in context: A328929 A098744 A337584 * A025429 A325561 A076250 Adjacent sequences: A273972 A273973 A273974 * A273976 A273977 A273978 KEYWORD nonn,tabf,easy AUTHOR Andrey Zabolotskiy, Nov 10 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 28 22:27 EST 2024. Contains 370400 sequences. (Running on oeis4.)