login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337584
Triangle read by rows: T(n, k) is the number of integer multisets of size k (partitions of k) that match the multiplicity multiset of some partition of n (n >= 1, 1 <= k <= n).
3
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 4, 3, 2, 1, 1, 1, 1, 3, 2, 4, 3, 2, 1, 1, 1, 2, 2, 4, 4, 4, 3, 2, 1, 1, 1, 1, 2, 3, 5, 3, 5, 3, 2, 1, 1, 1, 2, 3, 5, 5, 8, 5, 5, 3, 2, 1, 1, 1, 1, 2, 3, 5, 5, 8, 5, 5, 3, 2, 1, 1, 1, 2, 2, 4, 5, 7, 8, 8, 5, 5, 3
OFFSET
1,8
COMMENTS
The relevant partitions of n have exactly k parts.
Column k is k-periodic from n = k*(k+1)/2.
LINKS
Alois P. Heinz, Rows n = 1..125 (first 71 rows from Álvar Ibeas)
Álvar Ibeas, First 30 rows
FORMULA
If k > (2*n+1)/3, T(n, k) = A088887(n - k).
If n >= k*(k+1)/2, T(n, k) = Sum_{d | gcd(n, k)} A000837(k/d).
T(n, k) = A000041(k) iff k|n and n >= k*(k+1)/2.
EXAMPLE
There is no partition of 5 with multiplicity multiset (3) or (1, 1, 1).
Indeed, both (2 = A008284(5, 3)) partitions of 5 into 3 parts (namely, (3, 1, 1) and (2, 2, 1)) have multiplicities (2, 1). Therefore, T(5, 3) = 1.
Triangle begins:
k: 1 2 3 4 5 6 7 8 9 10
--------------------
n=1: 1
n=2: 1 1
n=3: 1 1 1
n=4: 1 2 1 1
n=5: 1 1 1 1 1
n=6: 1 2 3 2 1 1
n=7: 1 1 2 2 2 1 1
n=8: 1 2 2 4 3 2 1 1
n=9: 1 1 3 2 4 3 2 1 1
n=10: 1 2 2 4 4 4 3 2 1 1
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, `if`(n=0, {[]}, {[n]}),
{b(n, i-1)[], seq(map(x-> sort([x[], j]), b(n-i*j, i-1))[], j=1..n/i)})
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(add(x^add(i, i=t), t=b(n$2))):
seq(T(n), n=1..20); # Alois P. Heinz, Aug 17 2021
CROSSREFS
Cf. A000041, A008284, A088887 (row sums).
T(2n,n) gives A344680.
Sequence in context: A261794 A328929 A098744 * A273975 A025429 A325561
KEYWORD
nonn,tabl
AUTHOR
Álvar Ibeas, Sep 02 2020
STATUS
approved