Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Aug 17 2021 06:17:14
%S 1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,2,3,2,1,1,1,1,2,2,2,1,1,1,2,2,4,3,2,
%T 1,1,1,1,3,2,4,3,2,1,1,1,2,2,4,4,4,3,2,1,1,1,1,2,3,5,3,5,3,2,1,1,1,2,
%U 3,5,5,8,5,5,3,2,1,1,1,1,2,3,5,5,8,5,5,3,2,1,1,1,2,2,4,5,7,8,8,5,5,3
%N Triangle read by rows: T(n, k) is the number of integer multisets of size k (partitions of k) that match the multiplicity multiset of some partition of n (n >= 1, 1 <= k <= n).
%C The relevant partitions of n have exactly k parts.
%C Column k is k-periodic from n = k*(k+1)/2.
%H Alois P. Heinz, <a href="/A337584/b337584.txt">Rows n = 1..125</a> (first 71 rows from Álvar Ibeas)
%H Álvar Ibeas, <a href="/A337584/a337584.txt">First 30 rows</a>
%F If k > (2*n+1)/3, T(n, k) = A088887(n - k).
%F If n >= k*(k+1)/2, T(n, k) = Sum_{d | gcd(n, k)} A000837(k/d).
%F T(n, k) = A000041(k) iff k|n and n >= k*(k+1)/2.
%e There is no partition of 5 with multiplicity multiset (3) or (1, 1, 1).
%e Indeed, both (2 = A008284(5, 3)) partitions of 5 into 3 parts (namely, (3, 1, 1) and (2, 2, 1)) have multiplicities (2, 1). Therefore, T(5, 3) = 1.
%e Triangle begins:
%e k: 1 2 3 4 5 6 7 8 9 10
%e --------------------
%e n=1: 1
%e n=2: 1 1
%e n=3: 1 1 1
%e n=4: 1 2 1 1
%e n=5: 1 1 1 1 1
%e n=6: 1 2 3 2 1 1
%e n=7: 1 1 2 2 2 1 1
%e n=8: 1 2 2 4 3 2 1 1
%e n=9: 1 1 3 2 4 3 2 1 1
%e n=10: 1 2 2 4 4 4 3 2 1 1
%p b:= proc(n,i) option remember; `if`(n=0 or i=1, `if`(n=0, {[]}, {[n]}),
%p {b(n, i-1)[], seq(map(x-> sort([x[], j]), b(n-i*j, i-1))[], j=1..n/i)})
%p end:
%p T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(add(x^add(i, i=t), t=b(n$2))):
%p seq(T(n), n=1..20); # _Alois P. Heinz_, Aug 17 2021
%Y Cf. A000041, A008284, A088887 (row sums).
%Y T(2n,n) gives A344680.
%K nonn,tabl
%O 1,8
%A _Álvar Ibeas_, Sep 02 2020