login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344680
Number of partitions of n that are also multiplicity multiset of a partition of 2n.
1
1, 1, 2, 3, 4, 4, 8, 8, 12, 14, 18, 21, 30, 33, 41, 49, 62, 70, 86, 98, 116, 133, 160, 181, 214, 237, 282, 311, 364, 407, 466, 522, 600, 652, 761, 815, 937, 1038, 1179, 1271, 1442, 1577, 1762, 1930, 2158, 2311, 2636, 2831, 3146, 3402, 3784, 4057, 4537, 4869, 5365, 5745, 6370, 6802, 7562, 8061, 8785, 9471, 10410
OFFSET
0,3
FORMULA
a(n) = A337584(2n,n).
EXAMPLE
a(0) = 1: [].
a(1) = 1: [1].
a(2) = 2: [2], [1,1].
a(3) = 3: [3], [1,2], [1,1,1].
a(4) = 4: [4], [1,3], [2,2], [1,1,2].
a(5) = 4: [5], [1,4], [1,1,3], [1,2,2].
a(6) = 8: [6], [1,5], [2,4], [3,3], [1,1,4], [1,2,3], [2,2,2], [1,1,1,3].
a(7) = 8: [7], [1,6], [1,1,5], [1,2,4], [1,3,3], [2,2,3], [1,1,1,4], [1,1,2,3].
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, `if`(n=0, {[]}, {[n]}),
{b(n, i-1)[], seq(map(x-> sort([x[], j]), b(n-i*j, i-1))[], j=1..n/i)})
end:
a:= n-> nops(select(l-> add(i, i=l)=n, b(2*n$2))):
seq(a(n), n=0..30);
CROSSREFS
Sequence in context: A319079 A325329 A224038 * A330147 A241037 A097093
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 17 2021
STATUS
approved