OFFSET
1,2
LINKS
Sebastian Karlsson, Table of n, a(n) for n = 1..10000
FORMULA
Dirichlet g.f.: zeta(s - 1)^3 / zeta(s)^3.
Multiplicative with a(p^e) = (1/2)*(p-1)*p^(e-3)*(e^2*(p-1)^2 + 3*e*(p^2-1) + 2*(p^2 + p + 1)).
Sum_{k=1..n} a(k) ~ 27*n^2/Pi^10 * (2*Pi^4*log(n)^2 - 2*Pi^4*log(n)*(1 + 6*log(2) - 72*(1/12 - zeta'(-1)) + 6*log(Pi)) + Pi^4*(1 + 6*gamma*(2*gamma - 1) - 12*sg1) + 864*zeta'(2)^2 - 36*Pi^2*((6*gamma - 1)*zeta'(2) + zeta''(2))), where gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Jun 24 2022
MATHEMATICA
f[p_, e_] := (1/2)*(p - 1)*p^(e - 3)*(e^2*(p - 1)^2 + 3*e*(p^2 - 1) + 2*(p^2 + p + 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 17 2021 *)
PROG
(Python)
from sympy import divisors as div, totient as phi
def D(f, g, n):
return sum(f(d)*g(n//d) for d in div(n))
def phi_o_phi(n):
return D(phi, phi, n)
def a(n):
return D(phi, phi_o_phi, n)
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Sebastian Karlsson, Aug 17 2021
STATUS
approved