The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A261956 Start with a single equilateral triangle for n=0; for the odd n-th generation add a triangle at each expandable vertex of the triangles of the (n-1)-th generation (this is the "side to vertex" version); for the even n-th generation use the "side to side" version; a(n) is the number of triangles added in the n-th generation. 8
 1, 3, 6, 9, 12, 18, 15, 21, 21, 36, 39, 54, 36, 54, 39, 57, 45, 72, 63, 90, 60, 90, 63, 93, 69, 108, 87, 126, 84, 126, 87, 129, 93, 144, 111, 162, 108, 162, 111, 165, 117, 180, 135, 198, 132, 198, 135, 201, 141, 216, 159 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS See a comment on V-V and V-S at A249246. The overlap rules for the expansion are: (i) overlap within generation is allowed. (ii) overlap of different generations is prohibited. There are a total of 16 combinations as shown in the table below: +-------------------------------------------------------+ | Even n-th version    V-V      S-V      V-S      S-S   | +-------------------------------------------------------+ | Odd n-th  version                                     | |      V-V           A008486  A248969  A261951  A261952 | |      S-V           A261950  A008486  A008486    a(n)  | |      V-S           A249246  A008486  A008486  A261957 | |      S-S           A261953  A261954  A261955  A008486 | +-------------------------------------------------------+ Note: V-V = vertex to vertex, S-V = side to vertex,       V-S = vertex to side,   S-S = side to side. LINKS Kival Ngaokrajang, Illustration of initial terms FORMULA Conjectures from Colin Barker, Sep 10 2015: (Start) G.f.: -(9*x^13 +9*x^12 -12*x^11 -13*x^10 -12*x^9 -5*x^8 -3*x^7 -3*x^6 -9*x^5 -6*x^4 -6*x^3 -5*x^2 -3*x -1) / ((x-1)^2*(x+1)^2*(x^2+1)*(x^4+1)). a(n) = a(n-2) + a(n-8) - a(n-10) for n > 13. (End) PROG (PARI) {e=12; o=18; print1("1, 3, 6, 9, ", e, ", ", o, ", "); for(n=6, 100, if (Mod(n, 2)==0, if (Mod(n, 8)==6, e=e+3); if (Mod(n, 8)==0, e=e+6); if (Mod(n, 8)==2, e=e+18); if (Mod(n, 8)==4, e=e-3); print1(e, ", "), if (Mod(n, 8)==7, o=o+3); if (Mod(n, 8)==1, o=o+15); if (Mod(n, 8)==3, o=o+18); if (Mod(n, 8)==5, o=o+0); print1(o, ", ")))} CROSSREFS Cf. A008486, A248969, A249246. Sequence in context: A049707 A213685 A271449 * A166633 A310154 A253277 Adjacent sequences:  A261953 A261954 A261955 * A261957 A261958 A261959 KEYWORD nonn AUTHOR Kival Ngaokrajang, Sep 06 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 18:09 EDT 2021. Contains 345120 sequences. (Running on oeis4.)