login
A344685
Triangle T(n, k) obtained from the array N1(a, b) = a^2 + a*b - b^2, for a >= 0 and b >= 0, read by upwards antidiagonals.
1
0, 1, -1, 4, 1, -4, 9, 5, -1, -9, 16, 11, 4, -5, -16, 25, 19, 11, 1, -11, -25, 36, 29, 20, 9, -4, -19, -36, 49, 41, 31, 19, 5, -11, -29, -49, 64, 55, 44, 31, 16, -1, -20, -41, -64, 81, 71, 59, 45, 29, 11, -9, -31, -55, -81, 100, 89, 76, 61, 44, 25, 4, -19, -44, -71, -100
OFFSET
0,4
COMMENTS
The general array N(a, b) gives the norms of the integers alpha = a*1 + b*phi, for rational integers a and b, with phi = (1 + sqrt(5))/2 = A001622, in the real quadratic number field Q(phi), also called Q(sqrt(5)). N(a, b) := alpha*alpha' = a^2 + a*b - b^2, with alpha' = a*1 + b*phi' = (a+b)*1 - b*phi. (phi' = (1 - sqrt(5))/2 = 1 - phi = -1/phi.)
The present array is N1(a, b) = N(a, b) = N(-a, -b), for a >= 0 and b >= 0. The companion array N2(a, b) = N(a, -b) = N(-a, b), for a >= 0 and b >= 0 is given (as triangle) in A281386.
The subtriangle N(a, b), with 0 <= b <= a, is given in A281385.
The units u = a + b*phi of the integer domain of Q(phi) satisfy N(a, b) = +1 or -1, and they are related to positive and negative integer powers of phi, involving neighboring Fibonacci numbers a and b of different signs. See, e.g., Hardy and Wright, Theorem 257, p. 222 (units are there called unities).
If |N(alpha)| = q, with q a rational prime, then alpha is a prime in Q(phi). See, e.g., the Dodd reference, Theorem 3.4, p. 23. But there are other primes. For all primes see e.g., Hardy and Wright, Theorem 257, p. 222, or Dodd, Theorem 3.10, p. 25. For rational primes which are also primes in Q(phi) (so-called inert primes) see A003631. See the tables in Appendix B of Dodd, pp. 128 - 150, for the cases p, (p, 0), for all rational primes <= 32717.
REFERENCES
F. W. Dodd, Number theory in the quadratic field with golden section unit, Polygonal Publishing House, Passaic, NJ.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, fifth edition, Clarendon Press Oxford, 2003.
FORMULA
Array N1(a, b) = a^2 + a*b - b^2, for a >= 0 and b >= 0.
Triangle T(n, k) = N1(n-k, k) = n^2 - n*k - k^2, for n >= 0 and k = 0, 1, ..., n.
G.f. for row polynomials R(n, y) = Sum_{k=0..n} T(n, k)*y^k, i.e., g.f. of the triangle: G(x, y) = x*(1 - y + (1 + y - y^2)*x - 2*y*(2 - y)*x^2 + y^2*x^3)/((1 - x*y)^3*(1 - x)^3) (compare with the g.f. in A281385).
EXAMPLE
The array N1(a, b) begins:
a \ b 0 1 2 3 4 5 6 7 8 9 10 ...
-----------------------------------------------------
0: 0 -1 -4 -9 -16 -25 -36 -49 -64 -81 -100 ...
1: 1 1 -1 -5 -11 -19 -29 -41 -55 -71 -89 ...
2: 4 5 4 1 -4 -11 -20 -31 -44 -59 -76 ...
3: 9 11 11 9 5 -1 -9 -19 -31 -45 -61 ...
4: 16 19 20 19 16 11 4 -5 -16 -29 -44 ...
5: 25 29 31 31 29 25 19 11 1 -11 -25 ...
6: 36 41 44 45 44 41 36 29 20 9 -4 ...
7: 49 55 59 61 61 59 55 49 41 31 19 ...
8: 64 71 76 79 80 79 76 71 64 55 44 ...
9: 81 89 95 99 101 101 99 95 89 81 71 ...
10: 100 109 116 121 124 125 124 121 116 109 100 ...
...
-----------------------------------------------------
The Triangle T(n, k) begins:
n \ k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 0
1: 1 -1
2: 4 1 -4
3: 9 5 -1 -9
4: 16 11 4 -5 -16
5: 25 19 11 1 -11 -25
6: 36 29 20 9 -4 -19 -36
7: 49 41 31 19 5 -11 -29 -49
8: 64 55 44 31 16 -1 -20 -41 -64
9: 81 71 59 45 29 11 -9 -31 -55 -81
10: 100 89 76 61 44 25 4 -19 -44 -71 -100
...
------------------------------------------------
Units from norm N(a, b) = N1(a, b) = +1 or -1, for a >= 0 and b >= 0: +(a, b) or -(a, b), with (a, b) = (0, 1), (1, 0), (1, 1), (1, 2), (2, 3), (3, 5), (5, 8), ...; cases + or - phi^n, n >= 0.
Some primes im Q(phi) from |N1(a, b)| = q, with q a prime in Q:
a = 1: (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 9), (1, 10), ...
a = 2: (2, 1), (2, 5), (2, 7), (2, 9), ...
a = 3: (3, 1), (3, 2), (3, 4), (3, 7), (3, 8), (3, 10), ...
a = 4: (4, 1), (4, 3), (4, 5), (4, 7), (4, 9), ...
a = 5: (5, 1), (5, 2), (5, 3), (5, 4), (5, 6), (5, 7), (5, 9), ...
a = 6: (6, 1), (6, 5), (6, 7), ...
a = 7: (7, 2), (7, 3), (7, 4), (7, 5), (7, 8), (7, 9), (7, 10), ...
a = 8: (8, 1), (8, 3), (8, 5), (8, 7), ...
a = 9: (9, 1), (9, 4), (9, 5), (9, 8), (9, 10), ...
a = 10: (10, 1), (10, 9) ...
...
CROSSREFS
KEYWORD
sign,tabl,easy
AUTHOR
Wolfdieter Lang, Jun 17 2021
STATUS
approved