The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174061 The Lucky Tickets Problem. 4
 1, 10, 670, 55252, 4816030, 432457640, 39581170420, 3671331273480, 343900019857310, 32458256583753952, 3081918923741896840, 294056694657804068000, 28170312778225750242100 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A ticket has a 2n-digit number. (The initial digits are allowed to be zeros.) A ticket is lucky if the sum of the first n digits is equal to the sum of the last n digits. a(n) is the number of lucky tickets. a(n) is also the number of tickets in which the sum of all the digits is 9*n. a(n) is the number of integers whose digits sum = 9*n in [0, 100^n-1]. The most common value of sums of digits of numbers in [0, 100^n-1] is 9*n. - Miquel Cerda, Jul 02 2017 REFERENCES S. K. Lando, Lectures on Generating Functions, AMS, 2002, page 1. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 A. Dubey, A Simplified Analysis To A Generalized Restricted Partition Problem, Principia: The Princeton Undergraduate Mathematics Journal, Issue 2, 2016. FORMULA a(n) = Sum_{k=0..n-1} (-1)^k * binomial(2n,k) * binomial(11n-1-10k,2n-1). a(n) = [x^(9n)] ((1 - x^10)/(1 - x))^(2n). a(n) = A025015(2*n). - Miquel Cerda, Jul 18 2017 EXAMPLE The ticket 123051 is lucky because 1 + 2 + 3 = 0 + 5 + 1. 670 is the number of integers in the [0, 100^2-1] range whose digits sum = 18 and 55252 is the number of integers in the [0, 100^3-1] range whose digits sum = 27. - Miquel Cerda, Jul 02 2017 MATHEMATICA Table[Total[ CoefficientList[Series[((1 - x^10)/(1 - x))^n, {x, 0, 9*n}], x]^2], {n, 0, 15}] PROG (PARI) a(n)=if(n==0, 1, sum(k=0, n - 1, (-1)^k*binomial(2*n, k)*binomial(11*n - 1 - 10*k, 2*n - 1))); \\ Indranil Ghosh, Jul 01 2017 CROSSREFS Sequence in context: A126680 A249848 A214108 * A058174 A006435 A108603 Adjacent sequences:  A174058 A174059 A174060 * A174062 A174063 A174064 KEYWORD nonn,base AUTHOR Geoffrey Critzer, Mar 06 2010, Mar 13 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 14 03:51 EDT 2021. Contains 343872 sequences. (Running on oeis4.)