login
A174062
Least possible sum of exactly n positive integers less than 2n such that none of the n integers divides another.
1
1, 5, 10, 17, 31, 42, 55, 75, 92, 111, 139, 162, 187, 233, 262, 293, 337, 372, 409, 461, 502, 545, 615, 662, 711, 779, 832, 887, 963, 1022, 1083, 1181, 1246, 1313, 1405, 1476, 1549, 1649, 1726, 1805, 1951, 2034, 2119, 2235, 2324, 2415, 2539, 2634, 2731, 2885
OFFSET
1,2
MAPLE
f:= proc(N) local i, j, obj, cons;
obj:= add(i*x[i], i=1..2*N-1);
cons:= {seq(seq(x[i]+x[j]<=1, j=2*i..2*N-1, i), i=1..N),
add(x[i], i=1..2*N-1)=N};
Optimization:-Minimize(obj, cons, assume=binary)[1]
end proc:
map(f, [$1..60]); # Robert Israel, May 06 2019
MATHEMATICA
a[n_] := Module[{obj, cons},
obj = Sum[i*x[i], {i, 1, 2n-1}];
cons = Append[Flatten[Table[Table[x[i]+x[j] <= 1, {j, 2i, 2n-1, i}], {i, 1, n}], 1], AllTrue[Array[x, 2n-1], 0 <= # <= 1&] && Sum[x[i], {i, 1, 2n-1}] == n];
Minimize[{obj, cons}, Array[x, 2n-1], Integers][[1]]];
Reap[For[n = 1, n <= 50, n++, Print[n, " ", a[n]]; Sow[a[n]]]][[2, 1]]; (* Jean-François Alcover, May 17 2023, after Robert Israel *)
CROSSREFS
Row sums of triangle A174063. [David Brown, Mar 20 2010]
Sequence in context: A271328 A086653 A215449 * A020642 A067253 A284703
KEYWORD
nonn
AUTHOR
David Brown, Mar 06 2010
EXTENSIONS
Extended by Ray Chandler, Mar 19 2010
STATUS
approved