login
A333598
Numbers m such that m! has a palindromic number of decimal digits.
1
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 22, 30, 37, 44, 57, 63, 69, 70, 81, 86, 91, 106, 111, 116, 126, 131, 140, 145, 154, 163, 168, 177, 186, 199, 221, 225, 238, 242, 255, 259, 288, 292, 368, 372, 384, 388, 407, 411, 419, 423, 438, 450, 532
OFFSET
1,3
COMMENTS
The corresponding palindromic numbers are 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 77, 88, 99, 101, ...
Nice result: 22 is a palindrome and 22! has 22 digits, and also, 44! has 55 digits.
EXAMPLE
14! = 87178291200 that has 11 digits, 11 is a palindrome, hence 14 is a term.
MATHEMATICA
Select[Range[0, 532], PalindromeQ @ Length @ IntegerDigits[#!] &] (* Amiram Eldar, Mar 28 2020 *)
Select[Range[0, 550], PalindromeQ[IntegerLength[#!]]&] (* Harvey P. Dale, Oct 30 2023 *)
PROG
(PARI) isok(m) = my(d=digits(#Str(m!))); d == Vecrev(d); \\ Michel Marcus, Mar 28 2020
CROSSREFS
Cf. A006488 (similar, with square), A035065 (similar, with prime), A056851 (similar, with cube), A333431 (similar, with factorial).
Sequence in context: A117325 A180643 A017905 * A044962 A044824 A048310
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Mar 28 2020
STATUS
approved