login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079584
Number of ones in the binary expansion of n!.
12
1, 1, 1, 2, 2, 4, 4, 6, 6, 6, 11, 7, 12, 12, 12, 18, 18, 22, 23, 17, 22, 25, 28, 31, 29, 30, 35, 38, 42, 40, 48, 42, 42, 46, 51, 56, 51, 58, 59, 64, 63, 66, 64, 71, 74, 70, 77, 81, 89, 87, 89, 90, 88, 94, 87, 99, 103, 98, 101, 109, 113, 103, 113, 120, 120, 109, 123, 121, 130, 121
OFFSET
0,4
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
Florian Luca, The number of non-zero digits of n!, Canad. Math. Bull. 45 (2002), pp. 115-118.
Carlo Sanna, On the sum of digits of the factorial, arXiv:1409.4912 [math.NT], 2014.
Carlo Sanna, On the sum of digits of the factorial, Journal of Number Theory 147 (2015), pp. 836-841.
FORMULA
a(n) << n log n. - Charles R Greathouse IV, Mar 27 2013
a(n) = A000120(A000142(n)). - Michel Marcus, Sep 18 2014
EXAMPLE
a(5) = 4 because 5! = 120 and 120_10 = 1111000_2, with 4 ones.
MAPLE
seq(convert(convert(n!, base, 2), `+`), n=0..1000); # Robert Israel, Sep 18 2014
MATHEMATICA
Table[DigitCount[n!, 2, 1], {n, 70}] (* Harvey P. Dale, Jul 10 2012 *)
PROG
(PARI) for(n=1, 300, b=binary(n!); print1(sum(k=1, length(b), b[k])", "))
(PARI) a(n)=hammingweight(n!) \\ Charles R Greathouse IV, Mar 27 2013
(Python)
import math
def a(n):
return bin(math.factorial(n))[2:].count("1") # Indranil Ghosh, Dec 23 2016
CROSSREFS
Cf. A000120 (binary weight), A000142 (factorial), A004152 (sum of decimal digits).
Sequence in context: A070320 A124195 A220662 * A179291 A004079 A096494
KEYWORD
nonn,base
AUTHOR
Jose R. Brox (tautocrona(AT)terra.es), Jan 26 2003
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Mar 07 2023
STATUS
approved